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Abstract: The classical wave equation initial value problem in single and multiple time dimensions
is posed and subsequently, the physical and mathematical basis of it is discussed. The Theorem of
Asgeirsson is proved and applied to study the wave equation with multiple time dimensions. Further,
with the assembly of work by Courant and Hilbert, the well-posedness of such problems is determined
in detail.

1 Introduction

Physical theories or interpretations with multiple time dimensions are usually ignored or shunned by
most researchers. The standard consensus among physicists has been that such problems are unstable, or
hopelessly unpredictive [Wei]. This interpretation has also transferred into the mathematical community,
and so, such problems are generally not considered.

Although it has been shown that the canonical ‘initial value problem’ for the wave equation with more
than one time dimension is ill-posed in the sense of Hadamard [RR62, Wei], the recent work of S. Weinstein
and W. Craig has presented a sufficient constraint on such problems endowing them with a well-posedness
condition near-that of standard single time dimension problems [CW09]. This latter result will be briefly
outlined in the conclusion and hopefully will be the subject of a later publication.

Both of the above arguments for the well-posedness of the single and multiple time wave equation are
fleshed out in the proceeding sections, with specific care taken so that, with only limited knowledge of
partial differential equations, they can be understood by a standard undergraduate audience.

2 The Wave Equation and The Theorem of Asgeirsson

Definition 2.1. In this paper, an Initial Value Problem (IVP) is a pair [A,B] where A is a partial differential
equation and B is a set of initial conditions which must be satisfied by a particular solution of A. Here,
an initial condition is a set of function values imposed upon the solution at a specified point in its
domain.

Definition 2.2. The Laplacian with respect to the vector x = (x1, x2, . . . , xn), is the differential operator

4x =
∂2

∂x21
+

∂2

∂x22
+ · · ·+ ∂2

∂x2n

Definition 2.3. A function f : Rn → R is said to have compact support if f = 0 on all but a compact subset
of Rn. We will denote Cr functions of this variety by Cr0 .

Definition 2.4. A problem is said to be well-posed (in the sense of Hadamard) if each of the following hold:

• there exists a solution,

• the solution is unique,

• the solution depends continuously (in the chosen norm) on the data.

If any of the above conditions fail to hold, the problem is said to be ill-posed.
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2.1 The wave equation in one time dimension

A useful and well-studied equation in modern mathematics, the ‘wave equation’ applied to a function
u = u(x, y, z, t), is defined as

∂2u

∂t2
=
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
,

where we consider x, y, z to be independent ‘space variables’ and t to be an independent ‘time variable’.
This equation is commonly used to describe the propagation of sound, light, and water waves as they move
through their respective 3-dimensional medium.

When generalized to (n+ 1)-dimensional euclidean space, the wave equation is commonly seen in the
form:

∂2u

∂t2
= utt = 4xu, (2.1)

where n ≥ 1.
An interesting and relevant fact about Equation 2.1, tying into its physical significance, is that for

every n ≥ 1, the canonical ivp involving it is well posed on a salient class of physically valuable initial
conditions. The usual case of this problem is given by the ivp [(2.1), (2.2)].

Initial conditions: Take f, g : Rn → R where n = 2k or n = 2k + 1, and define

u(x, 0) = f(x), ut(x, 0) = g(x). (2.2)

The ivp [(2.1, (2.2)] is commonly called a ‘Cauchy Problem’ for the wave equation and is well-posed
provided that f ∈ Ck+2

0 and g ∈ Ck+1
0 [RR62].

2.2 The wave equation in many time dimensions

Taking t = (t1, t2, . . . , tm) and x = (x1, x2, . . . , xn) the wave equation in many time dimensions is defined as

4tu = 4xu.

Equivalently, as we will see useful later, when defining y = (t1, . . . , tm−1) and redefining t = tm, the above
equation may be written

∂2u

∂t2
= (4x −4y)u. (2.3)

As in section 2.1, we analogously construct corresponding initial conditions for Equation 2.3:

Initial conditions: Take f, g : Rn × Rm−1 → R and define

u(x, y, 0) = f(x, y), ut(x, y, 0) = g(x, y). (2.4)

We will soon see that [(2.3), (2.4)] with f ∈ Ck0 and g ∈ Ck0 is ill-posed for every k ≥ 1 (unless we
have further restrictions upon f and g [CW09]). In order to prove this, we must first present an important
theorem.

2.3 The theorem of Asgeirsson

Theorem 2.1 (Asgeirsson). For a solution u ∈ C2 of the differential equation

∂2u

∂t2
= (4x −4y)u (where m = n),

the average of u(x, t0) on a sphere of radius R and center x0 in x-space is the same as the average of
u(x0, t) on a sphere of radius R and center t0 in t-space [Fri55].
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Proof. For all α, β > 0, define the ellipsoidal mean of u in Rn

I(α, β) =
1

2nω2n

∫

F (α,β,x,t)=1

u(x, t)dω.

Where F (α, β, x, t) = |x|2
α + |t|2

β and ωk is the volume of the unit sphere in Rk.

Now observe that because dω is invariant under affine transformations, through a change of variables
x =
√
αη and t =

√
βζ, we arrive with

I(α, β) =
1

2nω2n

∫

|η|2+|ζ|2=1

u(
√
αη,

√
βζ)dω.

So

∂

∂α
I(α, β) =

1

2nω2n
√
α

∫

|η|2+|ζ|2=1

n∑

i=1

uxi(
√
αη,

√
βζ)ηidω

=
1

2nω2n

∫

|η|2+|ζ|2=1

∇xu(
√
αη,

√
βζ) · ηdω.

Considering the vector (∇xu(
√
αη,
√
βζ), 0t), we get by the divergence theorem

∂

∂α
I(α, β) =

1

2nω2n

∫

|η|2+|ζ|2<1

4xu(
√
αη,

√
βζ)dηdζ

=
1

2nω2n
(αβ)−

n
2

∫

F (α,β,y)<1

4xu(x, t)dxdt. (2.5)

Similarly, we arrive with

∂

∂β
I(α, β) =

1

2nω2n
(αβ)−

n
2

∫

F (α,β,y)<1

4tu(x, t)dxdt. (2.6)

So, we observe by Equations 2.5 and 2.6 that ( ∂
∂α − ∂

∂β )I(α, β) = 0 since (4x −4t)u = 0. Thus, we

have that I(α, β) = φ(α+ β) for some φ : R→ R, and in particular,

I(α, β) = I(β, α) for all α, β > 0. (2.7)
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Furthermore,

lim
β→0+

2nω2nI(α, β) =

∫

|η|2+|ζ|2=1

u(
√
αη, 0)dω

=


 d

dr

∫

|η|2+|ζ|2≤r2
u(
√
αη, 0)dηdζ



r=1

=


 d

dr

∫

|η|2≤r2
u(
√
αη, 0)

∫

|ζ|2≤r2−|η|2
dζdη



r=1

=


 d

dr
ωn

∫

|η|2≤r2
u(
√
αη, 0)(r2 − |η|2)

n
2 dη



r=1

= nωn

∫

|η|2≤1

u(
√
αη, 0)(1− |η|2)

n−2
2 dη

= nωnα
1−n

∫

|x|2≤α

u(x, 0)(α− |x|2)
n−2
2 dx. (2.8)

Now, because the integrand in Equation 2.8 is bounded for all |x| ≤ α, the above limit exists and we
may extend the domain of I to include β = 0. Similarly, we observe limα→0+ I(α, β) exists, and so we also
extend I accordingly. We see now that by Equation 2.7, we have

I(α, 0) = I(0, α) for all α > 0. (2.9)

Finally, define the spherical means in x-space and t-space respectively, by

I1(R) =
1

nωn

∫

|x|=R

u(x, 0)dSx and I2(R) =
1

nωn

∫

|t|=R

u(0, t)dSt. (2.10)

So when considering Equations 2.8 and 2.9 with α = R2, we find that for any fixed R > 0

0 = I(α, 0)− I(0, α)

=
ωnR

2−2n

2ω2n

∫

|x|2≤R2

u(x, 0)(R2 − |x|2)
n−2
2 dx

− ωnR
2−2n

2ω2n

∫

|t|2≤R2

u(0, t)(R2 − |t|2)
n−2
2 dt

=
ωnR

2−2n

2ω2n

R∫

0

rn−1(R2 − r2)
n−2
2

∫

|x|=r

u(x, 0)dSxdr

− ωnR
2−2n

2ω2n

R∫

0

rn−1(R2 − r2)
n−2
2

∫

|t|=r

u(0, t)dStdr

=
nω2

nR
2−2n

2ω2n

R∫

0

rn−1(R2 − r2)
n−2
2 (I1(r)− I2(r)) dr.
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Thus, since rn−1(R2 − r2)
n−2
2 > 0 for all 0 < r < R, it must be that I1(r) = I2(r) for all r > 0 because

R > 0 was considered arbitrarily.
Ultimately, although it has only been shown that the theorem holds for x0 = t0 = 0, because the

differential equation is linear, the result holds under any translation of the points x0 and t0.

Observe that the assumption n = m in Asgeirsson’s Theorem is artificial and that the result still holds
if we are considering equations of the form 4xu = 4tu, where n 6= m. In such a case, we seek solutions
independent of the neglected variables and the corresponding integration for the mean values is taken about
x0 and t0 in max{n,m}-dimensional space.

3 Solutions and Well-Posedness

3.1 One time dimension

Assuming n = 2k or n = 2k+ 1, then because u ∈ C2 it can be shown that for any f ∈ Ck+2 and g ∈ Ck+1

the following closed form solutions of [(2.1), (2.2)] exist for all n ≥ 1 [Sie10]. When n = 1 the solution is
well-known, and given by D’Alembert’s formula

u(x, t) =
f(x+ t) + f(x− t)

2
+

1

2

x+t∫

x−t

g(s)ds.

Furthermore, defining cn = 1 · 3 · · · · (2k − 1), we have for all other odd values of n

u(x, t) =
1

cnωn

∂

∂t



(

1

t

∂

∂t

)n−3
2

tn−2
∫

|ξ|=1

f(x+ tξ)dSξ




+
1

cnωn

(
1

t

∂

∂t

)n−3
2

tn−2
∫

|ξ|=1

g(x+ tξ)dSξ

Alternatively for all even n, using the method of descent upon the odd solutions above, we arrive with

u(x, t) =
1

cnωn

∂

∂t



(

1

t

∂

∂t

)n−2
2

tn−2
∫

|ξ|≤1

f(x+ tξ)√
1 + |ξ|2

dξ




+
1

cnωn

(
1

t

∂

∂t

)n−2
2

tn−2
∫

|ξ|≤1

g(x+ tξ)√
1 + |ξ|2

dξ.

We see by above formulas that the domain of dependence of the solution at (x, t) for t > 0 is
{x + tξ : |ξ| ≤ 1}. This allows us to conclude that because the functions f and g in Equation 2.2 have
compact support, so must the solution u when the t-variable is considered fixed. In particular, for any
f ∈ Ck+2

0 and g ∈ Ck+1
0 there is some R > 0 such that

u(x, t) = 0 for all x ∈ Rn \BR+t(0). (3.1)

Accounting for the above considerations, it will now be shown that all solutions to [(2.1), (2.2)] with
f ∈ Ck+2

0 and g ∈ Ck+1
0 , are unique. In essence, this suffices to show that for all f ∈ Ck+2

0 and g ∈ Ck+1
0 ,

the ivp [(2.1), (2.2)] is well-posed because the continuous dependence of [(2.1), (2.2)] follows directly from
the closed form of the solutions above.
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Proof of Uniqueness: Let u1 and u2 both be solutions of [(2.1), (2.2)]. Then for v = u1 − u2, we have that
since the wave equation is linear,





vtt = 4xv for (x, t) ∈ Rn × R+

v(x, 0) = f(x)− f(x) = 0 for x ∈ Rn

vt(x, 0) = g(x)− g(x) = 0 for x ∈ Rn
(3.2)

i.e. v satisfies [(2.1), (2.2)] for f = g = 0.
Consider now, the global energy function arising from physical considerations,

E(t) =

∫

Rn

(
vt

2 + |∇xv|2
)
dx,

and observe that

E′(t) =

∫

Rn

(
vtvtt +

n∑

i=1

vxivxit

)
dx

=

∫

BR+t(0)

(vtvtt +∇xv · ∇xvt) dx

=

∫

BR+t(0)

(vtvtt − vt4xv) dx+

∫

∂BR+t(0)

vt∇xv · ν̂dS

=

∫

BR+t(0)

vt · 0dx+ 0

= 0,

where the second and fourth equality follow from Equations 3.1 and 3.2, and the third follows from Green’s
first identity.

Thus, for all t > 0, E(t) = E(0) = 0 and so

∇xv = 0 and vt = 0 for all (x, t) ∈ Rn × R+.

Thus v is constant, which by Equation 3.2 implies v = 0 and so the uniqueness condition is indeed
satisfied.

3.2 Many time dimensions

Courant and Hilbert’s classic argument will now be constructed in order to show that [(2.3), (2.4)] is
ill-posed [CH62].

The problem of determining functions from their mean values: Consider the spherical mean
for a radius r of a function u = u(y, t) centered at (y, 0) in (y, t)-space:

Mu(y, r) =
1

nωn

∫

|ξ|2+τ2=r2

u(y + ξ, τ)dS = Q[u].

Observe that through the symmetry of the t = 0 coordinate, Q[u] depends only upon the even part of
u in the t-variable, mainly 1

2 (u(y, t) + u(y,−t)). We seek to determine u(y, t) + u(y,−t) from a particular
known Mu(y, r), and so through incredible foresight, we define

Nu(y, r) =

∫ r

0

Mu(y, ρ)dρ =
1

nωn

∫

|ξ|2+τ2≤r2
u(y + ξ, τ)dξ dτ. (3.3)
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Although it may appear unmotivated at the moment, differentiating Nu with respect to any of the yi
variables gives

∂

∂yi
Nu(y, r) =

1

nωn

∫

|ξ|2+τ2≤r2
uyi(y + ξ, τ) dξ dτ

=
1

nωn

∫

|ξ|2+τ2=r2

u(y + ξ, τ)ν̂i dS

=
1

nωnr

∫

|ξ|2+τ2=r2

u(y + ξ, τ)ξi dS,

where the second and third equalities follow by the divergence theorem and because ν̂i = ξi
r . Thus, observe

that

Q[u(y, t)yi] =
1

nωn

∫

|ξ|2+τ2=r2

u(y + ξ, τ)(yi + ξi)dS

= yiMu(y, r) + r
∂

∂yi
Nu(y, r)

= yiMu(y, r) + r
∂

∂yi

∫ r

0

Mu(y, ρ)dρ

= DiMu,

where

Di = (yi + r
∂

∂yi

∫ r

0

· dρ)

is a linear operator on the functions Mu(y, r).
Through linearity, we now see that given a polynomial P : Rn → R, we have

Q[Pu] = P (D1, . . . , Dn)Mu

and so MPu(y, r) = Q[Pu] will be known given that we have Mu.
Alternatively, we have

Q[Pu] =
1

nωn

∫

|ξ|2+τ2=r2

P (y + ξ)u(y + ξ, τ)dSξ,τ

=
1

nωn

∫

|y−η|2+τ2=r2

P (η)u(η, τ)dSη,τ

=
1

2nωn

∫

|y−η|2+τ2=r2

P (η)(u(η, τ) + u(η,−τ))dSη,τ ,

where in the above we have taken η = y + ξ and considered that Q[u], and hence Q[Pu], depend only upon
the even part of u in the t-variable.

Now, for |y − η|2 + τ2 = r2, we consider τ ≥ 0. So, writing τ = φ(η) =
√
r2 − |η − y|2 we get

dSη,τ =
√

1 + |∇ηφ|2dη

=

√
τ2 + |η − y|2

τ
dη

=
r

τ
dη.
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Thus,

Q[Pu] =
r

2nωn

∫

|y−η|2≤r2
P (η)(u(η, τ) + u(η,−τ))

dη

τ
. (3.4)

Finally through the Stone-Weierstrass Theorem, because polynomials are dense in C(Br(0),R) under
the supremum norm, we have that the function 1

τ (u(η, τ) + u(η,−τ)) can be determined uniquely by
Q[Pu] = P (D1, . . . , Dn)Mu. We then receive from this, a unique determination of the even part of u(y, t)
for |y0−y|2 + t2 = r2.1 The details of this unique determination result distract from the proof, see Theorem
A.1 in the appendix.

Claim 3.1. Given any sufficiently small ε > 0, any y0 ∈ Rn, and any r0 > 0, the even part of u,
1
2 (u(y, t) + u(y,−t)), upon the sphere |y0 − y|2 + t2 ≤ r20 is determined uniquely by Mu(y0, r0) upon
the finite cylinder, 0 ≤ r < r0 and |y − y0| ≤ ε.

Proof. Observe that in order to calculate DiMu = yiMu(y, r) + r ∂
∂yi

∫ r
0
Mu(y, ρ)dρ for y0 and r0 we need

only to know Mu(y, r) in some neighbourhood of y0 in y-space and for 0 ≤ r < r0. Without loss of
generality, assume that this necessary neighbourhood is a ball of radius ε > 0 centered at y0. We now have
that in order to calculate Q[Pu], it is necessary only to know Mu(y, r) for 0 ≤ r < r0 and |y − y0| ≤ ε.

Furthermore, recalling Equation 3.4 and noting that we are only considering 0 ≤ r < r0, we find that Mu

in the above cylinder uniquely determines the even part of u in the entire solid sphere |y0−y|2 + t2 ≤ r20.

Ill-posedness: Before we continue, it is relevant to note that any solution of [(2.3), (2.4)] will be even
in the t-variable because the map t 7→ −t preserves (2.3).

Now recall [(2.3), (2.4)], i.e.





utt = (4x −4y)u for (x, y, t) ∈ Rn × Rm

u(x, y, 0) = f(x, y) for (x, y) ∈ Rn × Rm−1

ut(x, y, 0) = g(x, y) for (x, y) ∈ Rn × Rm−1

and let G be a domain G ⊂ Rn, ε > 0, and consider only y ∈ Bε(y0) and x ∈ G.

Consider a solution u to [(2.3), (2.2)]. Then for fixed x we note that our prescribed function f
determines Mu over all spheres in (y, t)-space such that (y, t) ∈ Bε(y0)× {0} and whose radius r0 is still
small enough so that Br0(x) ⊂ G.

Recalling the proof of Asgeirsson’s Theorem we now arrive with the following two cases:

Case 1 (m ≥ n): By Asgeirsson’s Theorem directly, we find

1

mωm

∫

|ζ′|2=r20

u(x+ ζ, y, 0)dSζ′ =
1

mωm

∫

|ξ|2+τ2=r20

u(x, y + ξ, τ)dSξ,τ ,

where and ζ = (ζ1, . . . , ζn) and ζ ′ = (ζ1, . . . , ζn, . . . , ζm).

1Although the function 1
τ

(u(η, τ) + u(η,−τ)) is not continuous when τ = 0 (i.e. when |η − y| = r), it is continuous on any
compact set inside Br(0), and so essentially implying our conclusion [CH62].
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Case 2 (n ≥ m): Invoking Asgeirsson’s Theorem again, we find

1

nωn

∫

|ζ|2=r20

u(x+ ζ, y, 0)dSζ

=
1

nωn

∫

|ξ′|2+τ2=r20

u(x, y + ξ, τ)dSξ′,τ

=
1

nωn


 d

dr

∫

|ξ′|2+τ2≤r2
u(x, y + ξ, τ)dξ′dτ



r=r0

=
1

nωn


 d

dr

∫

|ξ|2+τ2≤r2
u(x, y + ξ, τ)

∫

|ξ′−ξ|2≤r2−|ξ|2−τ2

dξ′dτ



r=r0

=
1

nωn


 d

dr
ωn−m

∫

|ξ|2+τ2≤r2
u(x, y + ξ, τ)(r2 − |ξ|2 − τ2)

n−m
2 dξdτ



r=r0

=
(n−m)ωn−mr0

nωn

∫

|ξ|2+τ2≤r20

u(x, y + ξ, τ)(r20 − |ξ|2 − τ2)
n−m−2

2 dξdτ,

where ξ = (ξ1, . . . , ξm−1) and ξ′ = (ξ1, . . . , ξm−1, . . . , ξn−1). So in this case, similar to the proof of
Asgeirsson’s Theorem, we find that for all 0 ≤ r < r0, the above equation may be rewritten:

1

nωn

∫

|ζ|2=r2
u(x+ ζ, y, 0)dSζ =

m(n−m)ωn−mωmr
nωn

∫ r

0

ρn−m−1(r2 − ρ2)
n−m−2

2 I(ρ)dρ, (3.5)

where

I(r) =
1

mωm

∫

|ξ|2+τ2=r2

u(x, y + ξ, τ)dSξ,τ

is the spherical mean of u for a radius r, Mu, for a fixed x ∈ G taken in (y, t)-space at the point (x, y, 0).
Now, because the left hand side of Equation 3.5 is determined by f , differentiating Equation 3.5 twice with
respect to r gives us a first order differential equation for I(r) which has a unique solution by the existence
and uniqueness theorem for ordinary differential equations.

Given arbitrary n and m, it is necessary that we restrict r0 ≥ 0 to be small enough in order that
Br0(x) ⊂ G, i.e. so that the integral ∫

|ζ|2=r20

u(x+ ζ, y, 0)dSζ

is well defined. With this considered, we have by our previous claim that the even function 1
2 (u(x, y, t) +

u(x, y,−t)), and thus also u itself, is uniquely determined in the sphere |y0 − y|2 + t2 ≤ r20 by it’s mean
value Mu in (y, t)-space such that (y, t) ∈ Bε(y0)× {0}. Furthermore, consider that Mu itself is equal to
the same integral of the prescribed function f(x, y), and so Mu is determined uniquely by f(x, y).

In an analogous way, the function 1
2 (ut(x, y, t) + ut(x, y,−t)) is determined uniquely by g(x, y) and

from this we get that u(x, t) is determined uniquely by f and g. In particular, we get that u(x, y, 0) is
determined for its initial value t = 0 inside the sphere in y-space, |y0 − y|2 ≤ r20.

Thus, we have proven that if the initial values of a solution u of [(2.3), (2.4)] are known for x ∈ G and
t in an arbitrarily small sphere |y0 − y|2 ≤ ε2, then the initial values are uniquely determined everywhere in
the larger sphere |y0 − y|2 ≤ r20, where r0 is defined above [CH62].
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Hence, arbitrary initial conditions cannot be imposed upon the wave equation with multiple time
dimensions. This is in violation of any general well-posedness condition analogous to [(2.1), (2.2)] since the
existence of solutions will fail if the initial conditions f and g are not properly prescribed.

4 Conclusion

A fundamental difference between the two initial value problems [(2.1), (2.2)] and [(2.3), (2.4)] has now been
highlighted. This being that the first problem is well-posed, and so in loose terms, physically significant;
while the second problem is ill-posed and so not likely physically significant.

A possible physical interpretation of this is due specifically to the fact that when considering [(2.3), (2.4)],
we are prescribing our initial conditions on a ‘mixed hypersurface’—this being a hypersurface extending
not only in space, but also in time [Wei]. Thus the characteristics where upon a possible solution would
propagate are time-like in some directions and must agree with the time-like prescribed initial conditions.
This would inhibit a certain knowledge of future conditions which is highly unphysical.

In the past two years notable advancements of the well-posedness in the wave equation with many
times have been pursued by W. Craig and S. Weinstein [CW09]. Their methods outline a specific Fourier
transform derived constraint which, when imposed upon the respective initial conditions, has illuminated
a new set of conditions bringing well-posedness to the initial value problem [(2.3), (2.4)]. An addendum
article is planned to explore this particular development.
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A Unique determination of functions from dense integral
operators

Theorem A.1. Let r > 0 and assume f ∈ C(Br(0),R). Then, if

∫

|x|≤r

P (x)f(x)dx

is known for all P ∈ S ⊂ C(Br(0),R), where S is some subset dense in supremum norm, we have a
unique determination of the function f .
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Proof. Suppose we have two functions, f1, f2 ∈ C(Br(0),R) which have the same values under the operation∫
|x|<r

P (x) · dx for any P ∈ S. Then

∫

|x|≤r

P (x)(f1 − f2)dx = 0

for all P ∈ S. Effectively, in order to show f1 = f2, we only need to show that if f ∈ C(Br(0),R) and for
all P ∈ S ∫

|x|≤r

P (x)f(x)dx = 0,

then f must be the zero function.
So suppose that this is the case, but that f 6= 0. Then, since f is continuous, f is measurable, so

sgn f ∈ L1(Br(0)), so by the density of C(Rn,R) in L1 we can find a sequence from S, Pn(x)
∞
n=1, converging

uniformly to sgn f . Then let ε > 0 and take N ∈ N such that for all n ≥ N

‖Pn − sgn f‖∞ <
ε

‖f‖1
.

We see that

‖f‖1 =

∣∣∣∣∣∣∣

∫

|x|<r

|f |(x)dx

∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣

∫

|x|<r

(f(x) · sgn f − Pn(x)f(x))dx

∣∣∣∣∣∣∣

≤
∫

|x|<r

|f(x) · (sgn f − Pn(x))|dx

≤ ‖f‖1‖ sgn f − Pn‖∞
< ε

by Holders inequality. Since ε is arbitrary this is a contradiction, so f = 0.


