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Remarks

From the Editors

Dear Reader,

Thank you for taking a look at the second issue of The Waterloo Mathematics Review. We are greatly
motivated by the positive feedback the first issue generated, and hope that this one will do the same.
The second issue has brought considerable growth to the Review’s organizational structure; we have more
reviewers and an expanded general management staff. This issue also marks an important landmark for
the Review : the first article submitted from outside the University of Waterloo. As the Review grows
we become able to cover more areas of mathematics. While there is little overlap between the content
of this issue and the last, there are still several subfields that are underrepresented. In particular, while
mathematical physicists have been very active contributors, other applied mathematicians have been mostly
silent. We strongly encourage students in mathematical finance, mathematical economics, mathematical
biology, optimization in practice and theory, and computer science to submit articles to the Review.

In addition to looking for a greater diversity in submissions, we would like to see a greater diversity in
readership. Several readers have commented that they only read one or two articles in the first issue. One
reader commented that she did this because to her mathematics is a tribe of disciplines, connected by a
common method and tool set. We disagree with this point of view, to us mathematics is a single work,
diverse in its appearance and expression but fundamentally interconnected by more than just method. We
submit as evidence the many places in mathematics where two seemingly unrelated theories are revealed to
be facets of a common deeper theory. Finding and appreciating these interactions can only be accomplished
with a broad study of mathematics, so we encourage you to read (or at least attempt to read) every article.
We recognize that this may be a difficult task. As an example, suppose an author wishes to discuss algebraic
geometry. To read and understand such an article article, you would need knowledge of ring theory and
commutative algebra at the very least. Even if the article were relatively self contained it would not be
practical to build up all of the necessary prerequisites. Striking a balance between accessibility and length
of an article is a difficult task from the perspective of both an editor and a writer, and we will appreciate
any future feedback regarding this balance.

We would again like to sincerely thank Dr. Frank Zorzitto for his continued guidance and support.
Additionally, we would like to thank Dean Ian Goulden and the Faculty of Mathematics, the Mathematics
Society, and mathNEWS for their financial and logistic support in the production of the second issue. We
are also grateful for the actions of the  cumc Organizers, both for distributing the Review at the
conference and for organizing an excellent conference; we wish the  organizers similar success. Finally
we once again thank our general manager Richard Zsolt for his work. This will be the last issue produced
with him as general manager, and going into the fall the position is still vacant. We greatly appreciate his
support through the early days of the project, and wish him all the best as he starts law school at Western
this fall.

Yours truly,
Edgar A. Bering IV

Eeshan Wagh
Frank Ban

Editors-in-Chief
editor@mathreview.uwaterloo.ca
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From the Dean

Congratulations to the Editors-in-Chief of this second issue of The Waterloo Mathematics Review ! It takes
a lot of talent and dedication to tackle a project like this and be successful.

Talent and dedication are common traits among the students in Waterloo’s Faculty of Mathematics. As
Dean of the Faculty, I’m proud that students have developed this Review as a showcase. Readers will enjoy
the selection of original articles and, I hope, be inspired to continue digging deeper into the challenging
problems that define our discipline.

With best wishes for continued success,
Ian Goulden

Dean, Faculty of Mathematics

From the CMS Student Committee

The Canadian Mathematical Society’s Student Committee (Studc) has been gaining momentum over the
past couple of years. Our ongoing projects, such as the successful cumc  held in Laval and cumc 
to be held in Kelowna at ubc Okanagan, are becoming more popular than ever. Also, we have introduced
a number of new events at the semi-annual cms meetings, and the upcoming  cms Winter Meeting,
hosted by Ryerson in Toronto, promises to be an exciting conference filled with student-related activities.
In addition to the always-popular student social, we are hosting a panel discussion on using mathematics to
succeed in industry and also a professional CV writing workshop.

Feel free to check out our new and improved newsletter, “Notes from the Margin”, and stay tuned
for our newly redesigned website to be launched this Fall. For more information about the Studc, as
well as information on our cumc scholarship and our support for local conferences, go to our website:
http://www.cms.math.ca/students.

The cms Student Committee
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A Combinatorial Approach to Finding

Dirichlet Generating Function Identities
Aleksandar Vlasev

Simon Fraser University
azv@sfu.ca

Abstract: This paper explores an integer partitions-based method for obtaining Dirichlet generating
function identities. In the process we shall generalize a previous result, obtain previously unknown
formulae for the Möbius and Liouville Dirichlet generating functions, and obtain a formula on unit
fractions.

1 Introduction

The positive integers can be expressed as sums of positive integers in many ways. For example:
6 = 3 + 3 = 1 + 5 = 2 + 2 + 2, where 6 is also a partition of 6. The problems concerning such a
representation are additive in nature. If order matters, the sum is called a composition. If the order of the
summands does not matter, the sum is called a partition. Pak [Pak09] gives a history of partition identities
and an overview of various constructions that are used to obtain those identities.

One could also think about the multiplicative properties of the integers. Each positive integer can be
represented as a product of positive integers. Each such representation is a multiplicative partition. For
example, 24 = 2× 12 = 4× 6, where 24 is also its own multiplicative partition. The set of numbers in such
a representation is called a factorization. If the order of the summands matters, the factorization is called
ordered. When order is immaterial, the factorization is called unordered. Therefore unordered factorizations
are the multiplicative equivalent of integer partitions. Sometimes we shall call them multiplicative partitions
as well.

Knopfmacher and Mays [KM05, KM03] give results about factorizations. They use algebraic manip-
ulation and bijections to obtain factorization identities. The goal of this paper is to show that symbolic
methods, like the ones used by Pak, can be applied with some modifications to obtaining multiplicative
partition identities. We will essentially follow both papers and generalize some of the ideas presented. The
following two identities appear in the process

ζ(2s)

ζ(s)
= 1−

∞∑

k=1

p−sk
(1 + 2−s)(1 + 3−s)(1 + 5−s) . . . (1 + p−sk )

1

ζ(s)
= 1−

∞∑

k=1

p−sk (1− 2−s)(1− 3−s)(1− 5−s) . . . (1− p−sk−1),

where pk is the k-th prime. These are Dirichlet generating functions for the Möbius and Liouville functions
from number theory. The identities are a beautiful complement to the following two identities, obtained by
Knopfmacher and Mays

ζ(s) = 1 +
∞∑

k=1

p−sk
(1− 2−s)(1− 3−s)(1− 5−s) . . . (1− p−sk )

ζ(s)

ζ(2s)
= 1 +

∞∑

k=1

(1 + 2−s)(1 + 3−s)(1 + 5−s) . . . (1 + p−sk−1).
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In Section 2 we will introduce the notation that will be used throughout the rest of this paper.
We assume familiarity with Dirichlet generating functions (dgf’s). The section will conclude with two

basic examples that are important in the study of factorizations. In 2003, Knopfmacher and Mays [KM05]
derived several identities for factorization generating functions. For example, the Dirichlet generating
function for unordered factorizations and unordered factorizations with distinct divisors are

F (s) =
∞∏

n=2

1

1− n−s , Fd(s) =
∞∏

n=2

(1 + n−s).

Also, they derived the following dgf for the number of unordered factorizations with largest divisor k

F (s) =
k−s

(1− 2−s)(1− 3−s) . . . (1− k−s) .

In Section 3 we will use methods of Knopfmacher and Mays [KM05] to treat the general case of an arbitrary
environment. In the end of the section we shall derive some new identities not mentioned in said paper.
One of those identities will be the dgf for the number of unordered factorizations with smallest divisor k.
Based on this identity, we will derive some new identities for two number theoretic dgf’s (the Möbius and
Liouville functions).

In Section 4 we shall use the symbolic method to obtain a new factorization identity. It is based on the
idea of the Durfee square that is used for partitions. In the process we will also obtain an identity on unit
fractions.

We would like to thank the reviewers of The Waterloo Mathematics Review for catching many errors
and making many useful suggestions for improving the exposition of this paper.

2 Unordered Factorizations

We will model our notation after the notation used by Pak [Pak09].

Definition 2.1. Let an unordered factorization µ be an integer sequence

(µ1, µ2, . . . , µL), where µ1 ≥ µ2 ≥ . . . ≥ µL.

The µi are the parts of the factorization. The size of the factorization is

|µ| =
∏

n

µn.

The length is the number of distinct entries in µ (denoted by L(µ)). If |µ| = n, µ is an unordered
factorization of n (denoted by µ ` n). Let a(µ) and s(µ) be the largest and smallest parts of µ. The
multiplicity md of an integer d is the number of times it is present in µ. We can also use the notation
µ = (1m1 , 2m2 , . . .).

For example, let n = 1567641600 = 212375271. One unrestricted unordered factorization is

µ = (24, 33, 44, 52, 7, 92).

We can also use the fundamental theorem of arithmetic and decompose n in primes. One such factorization
is

ν = (212, 37, 52, 71),

Next
a(µ) = 9, s(µ) = 2

a(ν) = 7, s(ν) = 2.
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When considering the additive problem for integer partitions, one is quickly confronted by Ferrers
diagrams. For example, they are introduced in Pak’s paper under the name Young diagrams. They are
not to be confused with Young tableaux. A Ferrers diagram is a collection of squares on Z2 that represent
an integer partition. There are different conventions but the important part is that one axis encodes size
and the other encodes multiplicities. We model the definition after the one for Young diagrams used by
Pak [Pak09]. Multiplicatively, such a diagram does not work and we need to modify it.

Definition 2.2. A multiplicative partition diagram [µ] of an unordered factorization µ ` n is a collection of
1 × 1 squares (i, j) on a square Cartesian grid. Let 1 ≤ i ≤ L(µ) and 1 ≤ j ≤ mi. The parts of the
partition are on the i-axis and their multiplicities are on the j-axis. The complete diagram [µ]o is the
multiplicative partition diagram where we have an empty space for every 0 power of a prime.

Note that these diagrams are similar to composition diagrams but have an important difference. In a
composition diagram, the horizontal axis encodes the size of the element itself. That is, 5 squares indicate
the integer 5. In a multiplicative partition diagram, the horizontal axis encodes multiplicities. That is, 5
squares for a divisor d indicate that d occurs 5 times in the particular factorization of the integer whose
diagram we are looking at. Also, the first row of a diagram of an integer n encodes the multiplicity of the
smallest positive integer d dividing n, d ≥ 2. For µ and ν, the diagrams are

Figure 2.1: [µ] and [µ]o for µ = (24, 33, 44, 52, 7, 92)

Figure 2.2: [ν] and [ν]o for ν = (212, 37, 52, 71). The latter does not have empty spaces because we restrict
to prime divisors.

Next, we would like to focus on certain subsets of the positive integers, i.e. the prime numbers, the
residues of a certain modulo, etc. Also we would like to focus on certain allowed multiplicities of parts in
the multiplicative partition, i.e. distinct divisors, multiplicities from a certain residue class, other finite sets,
etc. Here we define a unifying structure for all the different sets of divisors and allowed multiplicities.

Definition 2.3. Let D be the set of allowed divisors. For d ∈ D, let Md be the set of allowed multiplicities
for d. The environment we are working in is the pair (D,M).

ForMd and D we can have the positive integers ≥ 2, the prime numbers, denoted by P and the integers
equivalent to b modulo a. Also, M is just the collection of sets of allowed multiplicities for the divisors in

D. We shall use generating functions to extract information on multiplicative problems. When considering
additive partitions, the most often used generating function is the ordinary generating function (ogf for
short). For multiplicative problems the dgf is the natural tool.
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The most famous dgf is the Riemann Zeta function (the dgf for the sequence (1, 1, . . .)), given by

ζ(s) =
∞∑

n=1

1

ns
=
∞∏

k=1

1

1− p−sk
.

The second equality is the Euler product representation for the zeta function. Both sides of the equation
converge for s with real part greater than 1. In this paper, we will treat the dgf’s formally, so their
convergence properties will not be covered. This could be the topic of future work.

Let’s start with a motivating example that is covered by Knopfmacher and Mays [KM05]. Let the
allowed divisors be the positive integers except 1. For each divisor, let the set of multiplicities be the set of
non-negative integers. That is D = N\{1} and Mn =M = N ∪ {0} for each divisor n. Next, let f(n) be
the number of multiplicative partitions of n with divisors from D. Note that f(1) is thus not defined. For
convenience, we define it to be f(1) = 1. Our first goal is to find the dgf for the sequence (f(n)). Formula
(3) [KM05] gives us the following dgf

F (s) =
∞∑

n=1

f(n)

ns
=
∞∏

n=2

1

1− n−s .

Using the geometric series, we can expand the right hand side (RHS) as

∞∏

t=2

1

1− t−s =
∞∏

t=2

∞∑

k=0

t−ks =
∞∏

t=2

∞∑

k=0

(
tk
)−s

=
∞∑

n=1

cnn
−s,

where the coefficients cn count the number of ways we have arrived at n−s through various multiplications.
This is exactly the number of unordered factorizations of n. Note that the product runs through all the
elements in the set D. Also, the n-th term in the product can be expanded as a geometric sum. Each of
those sums runs over the set of allowed multiplicities Mn. Next we consider the following product

Fd(s) =
∞∏

k=2

(1 + k−s).

We can expand the product as in the previous example. If cn is the coefficient of n−s in the expansion of
Fd(s), it again counts unordered factorizations. However, the situation is different this time. For each k of
the product, we can choose either k−s or 1 in the expansion. This corresponds to k either being an element
of µ ` n or not. However it cannot be an element more than once. Hence, the multiplicity of k is restricted
to 0 and 1. This is reflected in the k-th term in the product. From the preceding discussion, Fd(s) is the
dgf for the number of unordered factorizations with distinct parts. Also, the product forces us to define
f(1) = 1 for this problem as well. We could define f(1) = 1 but this will put restrictions on what we can
do. It is more useful to allow it to be defined by the problem.

Naturally, if we want to restrict ourselves to a finite set of allowed divisors, all we need to do is truncate
the product and consider terms only from D. Similarly, we can do the same on each term of the product.

3 General approach

We will now generalize the above discussion. Also, we will use the multiplicative factorization diagrams to
our advantage. We begin by writing down another definition

Definition 3.1. Let (D,M) be an environment. Let C be a constraint. Then n is reachable if there is at least
one µ ` n from the environment under the constraints C. Let f(n,C) count the number of unordered
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factorizations of n. Let f(n) = f(n, ∅) (unconstrained). Let Md(s) be the dgf for the constraints for
the divisor d. Then we define

F (s;C) =
∞∑

n=1

f(n,C)

ns
, Md(s) =

∑

m∈Md

1

dms
.

We also write F (s; ∅) = F (s).

The kinds of constraints we will focus on are simple—divisors and/or multiplicities will be restricted in
size or number. For example, we can set the largest admissible divisor to some integer or we can set the
maximum number of occurrences of a divisor. In the above definition, one could ask why are we taking the
sum over all n when all we need is d ∈ D. The reason is that product identities for F (s;C) may give terms
n−s, unreachable in our environment. Therefore, the coefficients f(n,C) for such terms must be defined
through the product. For example, we set f(1) = 1 in the determination of the dgf for all multiplicative
partitions. In that example, the only element unreachable from our environment is n = 1. This is true in
general—either f(1) = 0 or we have to define it as f(1) = 1. There is no other case of unreachable elements
n, for which we have to define f(n). This is not covered by Knopfmacher and Mays in 2003 [KM05]. Next,
we have our result about a general environment. We were unable to find a previous proof of this result in
the literature

Proposition 3.1. Let (D,M) be an environment. Then the generating function for f(n) is

F (s) =
∏

d∈D
Md(s)

The only unreachable element that we may need to define f(n) for is n = 1. We have to set f(1) = 1 if
and only if 0 is in Md(s) for every d ∈ D.

Proof. As in the discussion above, we need to formally expand the product on the RHS. We use the
definition for Md(s)

∏

d∈D
Md(s) =

∏

d∈D

∑

m∈Md

d−ms =
∞∑

n=1

cn
ns
.

The coefficient cn counts the number of times that elements from the product multiply to n−s. If cn = 0,
then n is not reachable, since it is not the product of elements from the environment. If cn ≥ 1 we have two
cases. If n ≥ 2, there must be some d ∈ D, d ≥ 2 with allowed multiplicity greater than 0, such that d|n.
Therefore, n is reachable and cn = f(n). Since all divisors are ≥ 1, if cn = 1, this means that 0 ∈Md for
every d. Otherwise, we would never reach it. So in this case we need to set f(1) = 1 for our environment.

Now, suppose that f(1) = 1 and the latter half of the statement is not true. Then there is a d such
that 0 /∈Md. Then there is no way we could get c1 > 0, since every product in the expansion of the RHS
would have a factor of at least d−s. Then this is a contradiction and the proof is complete.

The proposition allows us to construct the dgf for an environment (D,M) in an intuitive and efficient
way. For example, if we are unrestricted or if we use only even or distinct divisors we get the dgf’s

F (s) =

∞∏

n=1

1

1− n−s , Fe(s) =

∞∏

n=1

1

1− (2n)−s
, Fd(s) =

∞∏

n=2

(1 + n−s).

If we only want to use a finite subset of divisors, we just truncate the products. Also, we can readily
construct hybrids. The only thing left to do is to check whether 0 is in the allowed multiplicities for each
d ∈ D. This is the case for all the identities so far. This scheme is very similar to the scheme for partitions.
The main difference is that in partitions we use ogf’s and in the multiplicative case we use dgf’s. For
example, if we are unrestricted or if we use only even or distinct summands, we get the ogf’s

P (s) =
∞∏

n=1

1

1− zn , Pe(s) =
∞∏

n=1

1

1− z2n
, Pd(s) =

∞∏

n=1

(1 + zn).
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We shall look at some simple constraints. The multiplicative partition diagram can help us visualize
some transformations and help us derive identities. The first constraint we can look at is that of greatest
or smallest elements. The greatest element constraint is covered for a few cases by Knopfmacher and
Mays [KM05]. However, the minimum element constraint is not covered. We will do so here and we will
obtain some interesting identities. If we have the constraint C : a(µ) ≤ d, then we are essentially just
truncating D to elements smaller than or equal to d. If C : s(a) ≥ d, we have a truncation from below.
Similarly one can consider a constraint on the multiplicity of an element. The truncation follows there as
well.

Proposition 3.2. Let (D,M) be an environment. Then

F (s; a(µ) ≤ u) =
∏

d∈D,d≤u
Md(s), F (s; s(µ) ≥ u) =

∏

d∈D,d≥u
Md(s).

Proof. The proof follows from the previous discussion and Proposition 3.1.

There is an analogous result for partitions. In Section 5 [KM05] Knopfmacher and Mays perform a
largest element decomposition. That is, they find the generating function for unordered factorizations of n
with largest factor k. We shall imitate their exposition from the point of view of environments and then we
shall generalize it. Let D = N\{1} and Md = N ∪ {0} for all d in D. We use the constraint C : a(µ) = k.
Let n be a positive integer divisible by k. From the paper, the factorization of n “can be written as k × a
where a represents a factorization of n/k into factors ≤ k”. Then authors give the generating function

F (s; a(µ) = k) =
∞∑

n=1

f(n, a(µ) = k)

ns
=

k−s

(1− 2−s)(1− 3−s) . . . (1− k−s) ,

where we have written it in the new notation. Looking at this function, we can see that the right-hand side
is just k−sF (s; a(µ) ≤ k). Next the authors sum the above identity over all k and obtain the identity

∞∏

n=2

1

1− n−s = 1 +

∞∑

k=2

k−s

(1− 2−s)(1− 3−s) . . . (1− k−s) .

In the later part of that section they reapply this method to derive more “Series—Product” identities of
similar form. We shall generalize this method and extend it. To do so we will go through the same argument
in an arbitrary environment. However, we have to modify the approach a little bit because when we divide
by k, we cannot be sure if the remaining multiplicity of k is allowed. The following diagrams show what an
arbitrary multiplicative diagram looks like with maximum and minimum element constraints. Note that
the bars for u can be of any length. We start with the discussion for the maximum element decomposition
and later we will just state the results for the minimum element decomposition without proof because the
proofs are analogous.

Proposition 3.3. Let (D,M) be an environment. Let the largest part of µ be u and let it have multiplicity v
(denote this by Cvu : a(µ) = u,mu = v). Then

F (s, Cvu) = u−vs
∏

d∈D,d<u
Md(s).

Furthermore,

F (s, a(µ) = u) =
∏

d<u,d∈D
Md(s)

∑

m∈Mu,m 6=0

u−ms.

If 0 /∈Mu, then

F (s, a(µ) = u) =
∏

d≤u,d∈D
Md(s).
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v
u

u
v

Figure 3.1: Constraints a(µ) = u and s(µ) = u with multiplicity v

If 0 ∈Mu, then

F (s, a(µ) = u) = (Mu(s)− 1)
∏

d<u,d∈D
Md(s).

Proof. Suppose that µ ` n is a multiplicative partition satisfying condition Cvu. Its largest part is u and it
has multiplicity v. All multiplicative partitions of n contain v copies of u. We can map each partition of
n to a partition of n/uv by removing uv. Furthermore this map is a bijection between the multiplicative
partition diagrams of n and those of n/uv. Thus f(n,Cvu) = f(n/uv, a(µ) < u) and we can perform the
following summation

F (s, Cvu) =
∞∑

n=1

f(n,Cvu)

ns
=
∞∑

n=1

f(n/uv, a(µ) < u)

( nuv )s(uv)s

= u−vs
∞∑

n=1

f(n, a(µ) < u)

ns
= u−vsF (s, a(µ) < u)

= u−vs
∏

d∈D,d<u
Md(s)

Next, we need to prove the second identity. If µ is a multiplicative partition and u ∈ µ, then u has some
multiplicity. The classes of multiplicative partitions containing µ are disjoint with respect to multiplicity.
Therefore, the dgf for all µ containing u is just the sum F (s, Cmu ) over all non-zero multiplicities m in Mu

the identity follows directly. If 0 /∈Mu, then
∑

m∈Mu,m 6=0

u−ms =
∑

m∈Mu

u−ms = Mu(s).

If 0 ∈Mu, then ∑

m∈Mu,m 6=0

u−ms = −1 +
∑

m∈Mu

u−ms = Mu(s)− 1.
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For the example before the proposition, we have that for d, Md is the set all possible multiplicities.
Therefore

F (s, a(µ) = k) =

(
1

1− k−s − 1

) k−1∏

t=2

1

1− t−s = k−s
k∏

t=2

1

1− t−s ,

which is what we had before. Similarly, if our divisors are distinct, we have

F (s, a(µ) = k) = (1 + k−s − 1)
k−1∏

t=2

(1 + t−s) = k−s
k−1∏

t=2

(1 + t−s),

giving us the product inside the summation sign in Identity 28 of Knopfmacher and Mays [KM05]. Similarly,
we can perform the same analysis on unordered factorizations on primes to give us Identity 29 of said
paper [KM05]

F (s, a(µ) = pk) =
p−sk

(1− 2−s)(1− 3−s) . . . (1− p−sk )
.

Thus, Proposition 8 unifies and generalizes the approach of Knopfmacher and Mays. The next step is to get
identities like Identities 27, 28, 30, and 31 from Knopfmacher and Mays [KM05] right away.

Theorem 3.4. Let (D,M) be an environment. Then

F (s) = c+
∑

d∈D
F (s, a(µ) = d),

where c = 1 if 1 or 0.

Proof. To prove this we need to look at both sides of the equation and compare. Let n > 1. Each
F (s, a(µ) = d) enumerates all multiplicative partitions µ ` n that contain a largest factor d. Therefore, for
different d, they enumerate disjoint classes. Since we are summing over all d ∈ D, we are summing over all
possible largest factors of µ. Hence the sum on the RHS enumerates all multiplicative partitions of n. The
function on the LHS is just the dgf for all multiplicative partitions of n in the current environment. Hence
the two sides formally expand to the same sums of n−s for n > 1. For the case n = 1, if the LHS contains a
non-zero coefficient for n−s, we just need to add it to the RHS. By proposition 3.1, this coefficient can only
be 1. If the coefficient of 1−s is zero, then c = 0.

Thus Identities 27, 28, 30, and 31 from Knopfmacher and Mays [KM05] fall out of this formula right
away. Here are Identities 30 and 31

ζ(s) = 1 +
∞∑

k=1

p−sk
(1− 2−s)(1− 3−s)(1− 5−s) . . . (1− p−sk )

ζ(s)

ζ(2s)
= 1 +

∞∑

k=1

(1 + 2−s)(1 + 3−s)(1 + 5−s) . . . (1 + p−sk−1).

Similar analysis can be done considering the smallest element of the multiplicative partition. The following
theorem sums up the new results.

Theorem 3.5. Let (D,M) be an environment. Let Svu : s(µ) = u,mu = v, that is we have the constraint
that the smallest part of µ is u and it has multiplicity v. Then

F (s, Svu) = u−vs
∏

d∈D,d>u
Md(s).

Furthermore,

F (s, s(µ) = u) =
∏

d>u,d∈D
Md(s)

∑

m∈Mu,m 6=0

u−ms.
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Also

F (s) = c+
∑

d∈D
F (s, s(µ) = d),

where c = 1 is 1 or 0.

This scheme leads to some interesting consequences. The identity for F (s) from the proposition can be
re-written. First,

F (s, s(µ) = d) =
∏

d<u,d∈D
Md(s)

∑

m∈Mu,m 6=0

u−ms

= F (s)


 ∏

d≥u,d∈D
Md(s)



−1

∑

m∈Mu,m 6=0

u−ms

=
F (s)

F (s, s(µ) ≥ d)

∑

m∈Mu,m 6=0

u−ms.

If c = 1, we get

F (s, s(µ) = d) =
F (s)(Md(s)− 1)

F (s, s(µ) ≥ d)
.

Then the identity from the last proposition can be re-written as

F (s) = 1 +
∑

d∈D
F (s, s(µ) = d) = 1 + F (s)

∑

d∈D

(Md(s)− 1)

F (s, s(µ) ≥ d)
,

giving us the identity

1

F (s)
= 1−

∑

d∈D

(Md(s)− 1)

F (s, s(µ) ≥ d)
.

Next, if c = 0, we get

F (s, s(µ) = d) =
F (s)

F (s(µ) > d)

and ∑

d∈D

1

F (s, s(µ) > d)
= 1.

The propositions lead to some interesting identities

1

ζ(s)
= 1−

∞∑

k=1

p−sk
(1 + 2−s)(1 + 3−s)(1 + 5−s) . . . (1 + p−sk )

ζ(2s)

ζ(s)
= 1−

∞∑

k=1

p−sk (1− 2−s)(1− 3−s)(1− 5−s) . . . (1− p−sk−1).

They are the dgf’s for the Möbius and Liouville functions from number theory. Note the beautiful symmetry
between those identities and Identities 30 and 31 from Knopfmacher and Mays [KM05].

Now that we have gone over the general approach we may continue drawing analogies between additive
and multiplicative partitions. We may pick many of the constructions given by Pak and transform them
into multiplicative analogs but the one for the Durfee square seems simple enough to consider without
difficulties, yet complex enough to illustrate the method.
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4 Durfee Square equivalent

A Durfee square is the largest square in a Ferrers diagram. We can define a similar object for multiplicative
partitions. The largest square (rectangle) in a complete multiplicative partition diagram is the largest square
(rectangle) rooted at the top-left corner that fits in the diagram. In the case of rectangles, largest refers to
area.

h

h

b

a

Figure 4.1: A largest square and a largest rectangle.

This can be done for a general environment but is messy. For the unrestricted environment we have
two cases. Since the square is the largest, there must be some kind of obstruction on one of its sides. Let’s
consider two cases. Either h+ 2 has multiplicity ≤ h or ≥ h+ 1. In the first case, the obstruction is on the
lower side of the square. However, it could also be on the right. In the second case the obstruction is strictly
on the right. The following diagram shows the two cases. We can look at parts A and B as environments

h

h

h+2

A

B

h

h

h+2

A

B

Figure 4.2: The two cases for a largest square.

with some restrictions. We decompose the problem into smaller problems for each case.
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B
A

a = h+2 a < h+2 a > h+2
m ≤ h m ≥ 0 m ≥ 0

Figure 4.3: Case one.

B
A

a = h+2 a < h+2 a > h+2
m > h m ≥ 0 m ≥ 0

L < h

Figure 4.4: Case two.

Let’s begin with the first case. The parts of µ in A and B have unrestricted multiplicity. Also A, B,
the square, and part h+ 2 are independent of each other. The analysis so far gives us a bijection from the
whole diagram to its smaller parts. That is we have a bijection taking the original partition µ to partitions
of A, B, and part h+ 2. Since they are independent, we will multiply the generating functions together.
First, the dgf for the h+ 2 part is

E1(s) =
h∑

m=0

(h+ 2)−ms =
(h+ 2)−hs − (h+ 2)s

1− (h+ 2)s
.

The generating function for the square is

Fhh(s)h =
h+1∏

n=2

n−hs = ((h+ 1)!)−hs.

The dgf’s for A and B are

A(s) =
∞∏

n=h+3

1

1− n−s , B1(s) =
h+1∏

n=2

1

1− n−s .

Note that

A(s)B1(s) = (1− (h+ 2)−s)
∞∏

n=2

1

1− n−s = (1− (h+ 2)−s)F (s).

Putting everything together, the generating function for this case is

F1(s) = A(s)B1(s)E1(s)Fhh(s)h.
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Next, we work on the second case. Here A and the square have the same generating functions as in the first
case. The h+ 2 part has the generating function

E2(s) =
∞∑

m=h+1

(h+ 2)−ms =
(h+ 2)−(h+1)s

1− (h+ 2)−s
.

We need to be more careful with the dgf for B. We want to find the dgf for multiplicative partitions
where the allowed divisors are from 2 to h+ 1. Also, at least one of those divisors must have multiplicity 0.
If we consider the set of all allowed multiplicities, we can get the set where at least one of the divisors has
multiplicity 0 by taking the whole set and subtracting the set where none of the divisors has multiplicity 0.
In terms of the dgf’s, this is

B2(s) =
h+1∏

n=2

1

1− n−s −
h+1∏

n=2

n−s

1− n−s = B1(s)−B1(s)
h+1∏

n=2

n−s

= B1(s)(1− Fhh(s)).

Thus the dgf for the second case is

A(s)B1(s)(1− Fhh(s))E2(s)Fhh(s)h.

Overall, since the cases are disjoint and all-including, the dgf for unordered factorizations with largest
square h× h is

Fh(s) = F1(s) + F2(s) = A(s)B1(s)Fhh(s)h(E1(s) + (1− Fhh(s))E2(s))

= (1− (h+ 2)−s)F (s)Fhh(s)h(E1(s) + (1− Fhh(s))E2(s)).

We can simplify the expression in the brackets a bit. It is

E1(s) + E2(s)− Fhh(s)E2(s) =

∞∑

n=0

(h+ 2)−sm − Fhh(s)E2(s)

=
1

1− (h+ 2)−s
− (h+ 2)−(h+1)s

1− (h+ 2)−s
((h+ 1)!)−s

=
1

1− (h+ 2)−s
− (h+ 2)−hs

1− (h+ 2)−s
((h+ 2)!)−s

=
1− ((h+ 2)!)−s(h+ 2)−hs

1− (h+ 2)−s
.

Then Fh(s) becomes

Fh(s) =
F (s)

((h+ 1)!)hs

(
1− 1

((h+ 2)!)s(h+ 2)hs

)
.

The size h of the square can be any non-negative number. The size of the largest square defines equivalence
classes among the multiplicative partitions. Hence if we sum Fh(s) over all h, we will get F (s) back. After
cancelling F (s) from both sides we have the following curious identity

Proposition 4.1. Formally, the following identity holds

∞∑

h=0

1

((h+ 1)!)hs

(
1− 1

((h+ 2)!)s(h+ 2)hs

)
= 1.

Analytically, it seems that the identity holds for complex s with real part greater than 0. We have the
following proposition about the partial sums of the above identity.
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Proposition 4.2. If SN (s) is the partial summation of the above identity, then

SN (s) = 1− (N + 2)!−(N+1)s.

The formula is easy to prove by induction. The first few partial sums are

S0(s) = 1− 2−s,

S1(s) = 1− 36−s,

S2(s) = 1− 13824−s.

5 Conclusion

As one can see from the survey by Pak, there are numerous constructions for additive partition identities.
Yet, it seems like there are not that many constructions for multiplicative partition identities. The goal
is to change this and in this paper we introduced diagrams and general theory that will be useful in this
pursuit. Finally, as the Durfee square equivalent shows, this may not be straightforward but there are many
other constructions that one can consider. Analyzing the multiplicative equivalents for other constructions
could be the topic of future work.
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Abstract: In survey sampling, the use of auxiliary information can greatly improve the precision
of estimates of population total and/or means. In this paper, we explain the basic theory and use of
calibration estimators proposed by Deville and Särndal, which incorporate the use of auxiliary data.
Results of a simulation study conducted using real data from the 2008 Survey of Household Spending
by Statistics Canada are presented, comparing the performance of two calibration estimators against
the Horvitz-Thompson estimator. Limitations of calibration estimators and recent extensions made by
other leading statisticians in this topic are also discussed.

1 Introduction

The technique of estimation by calibration was introduced by Deville and Särndal in 1992 [DS92]. The
idea is to use auxiliary information to obtain a better estimate of a population statistic. First, consider a
finite population U of size N with unit labels 1, 2, . . . , N . Let yi, i = 1, . . . , N be the study variable and xi,
i = 1, . . . , N be the k-dimensional vector of auxiliary variables associated with unit i.

Suppose we are interested in estimating the population total ty =
∑N
i=1 yi. We draw a sample

s = {1, 2, . . . , n} ⊂ U using a probability sampling design P , where the first and second order inclusion
probabilities are πi = Pr(i ∈ s) and πij = Pr(i, j ∈ s) respectively. An estimate of ty is the Horvitz-
Thompson (HT) estimator

t̂HT =
∑

i∈s
diyi,

where di = 1/πi is the sampling weight, defined as the inverse of the inclusion probability for unit i.1 An
attractive property of the HT estimator is that it is guaranteed to be unbiased regardless of the sampling
design P . Its variance under P is given as

Vp(t̂HT ) =
N∑

i=1

N∑

j=1

(πij − πiπj)
yi
πi

yj
πj
. (1.1)

Now let us suppose that {xi, i = 1, . . . , N} is available and tx =
∑N
i=1 xi, the population total for x,

is known. Ideally, we would like ∑

i∈s
dixi = tx,

but often times this is not true.
The idea behind calibration estimators is to find weights wi, i = 1, . . . n close to di, based on a distance

function, such that ∑

i∈s
wixi = tx. (1.2)

1Please note that di and 1
πi

are used interchangeably in this paper.
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We wish to find weights wi similar to di so as to preserve the unbiased property of the HT estimator. Once
wi is found, the calibration estimator for ty is

t̂c =
∑

i∈s
wiyi.

In Section 2, we discuss how to find wi for a given sample s and the choice of distance function. The
relationship of the calibration estimator to the generalized regression (greg) estimator is also mentioned.
In Section 3, we discuss the expectation and variance of t̂c and how to perform variance estimation. Section
4 presents the results of a simulation study to test the efficiency of t̂c against t̂HT using two different
distance functions. In Section 5, we discuss advancements made by statisticians on the subject of calibration
estimators.

2 Derivation of the Calibration Estimator

Given a sample s, we want to find wi close to di based on a distance function D(w, d) subject to the
constraint in Equation 1.2. This is an optimization problem where we wish to minimize

Q(w1, . . . , wn,λ) =
∑

i∈s
D(wi, di)− λ

(∑

i∈s
wixi − tx

)
(2.1)

using the method of Lagrange multipliers.
Examples of distance functions are presented in Table 2.1. We will derive the calibration weights

using the Chi-squared distance (w − d)2/2qd (see Table 2.1), where q is a tuning parameter that can be
manipulated to achieve the optimal minimum of Equation 2.1. Note that in practice, the choice of distance
function depends on the statistician and the problem.

Table 2.1: Examples of distance functions D(w, d) adapted from Deville and Särndal [DS92]
D(w, d)

1. Chi-squared distance (w − d)2/2qd
2. Modified minimum entropy distance q−1(w log(w/d)− w − d)

3. Hellinger distance 2(
√
w −
√
d)2/q

4. Minimum entropy distance q−1(−d log(w/d) + w − d)
5. Modified chi-squared distance (w − d)2/2qw

Letting D(wi, di) = (wi − di)2/2qidi in Equation 2.1 and differentiating with respect to wi, we get

∂Q

∂wi
=

(wi − di)
qidi

− λxi. (2.2)

Setting Equation 2.2 to zero and solving for wi we get

wi = di(1 + qix
T

i λ). (2.3)

Using the constraint in Equation 1.2 we also get,

λ = T−1
s (tx − t̂xHT

),

where Ts =
∑
i∈s qidixix

T
i and t̂xHT

is the HT estimator for the population total with respect to the
auxiliary variable x.
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The resulting calibration estimator of ty is then

t̂c =
∑

i∈s
wiyi

= t̂yHT
+
∑

i∈s
diqix

T

i T
−1
s (tx − t̂xHT

)yi

= t̂yHT
+ B̂(tx − t̂xHT

), (2.4)

where B̂ = T−1
s

∑
i∈s diqixiyi.

Written in this form, we see that t̂c is the same as the greg estimator [CSW76]. In fact, the greg
estimator is a special case of the calibration estimator when the chosen distance function is the Chi-square
distance [DS92].

It is important to note that depending on the chosen distance function D(w, d), there may not exist an
analytical solution to Equation 2.2 and an approximation of wi using the Newton-Raphson or a similar
method may be required. Furthermore, the solution to Equation 2.2 may yield positive and/or negative
weights or extremely large weights, which may be undesirable in a survey sampling context. In terms of
efficiency, Deville and Särndal showed that for medium to large samples, the choice of D(w, d) does not
make a large impact on the variance of t̂c [DS92]. Deville and Särndal also showed that under certain
conditions, t̂c is asymptotically equivalent to t̂GREG for any distance function D(w, d) [DS92]. Thus, the
choice of distance function is unimportant for large samples, but rather depends on the computational effort
of solving Equation 2.2.

3 Expectation and Variance Estimation

To find the expectation and variance of t̂c, we use the linearization technique to find an approximation of
Ep(t̂c) and Vp(t̂c) with respect to a probability sampling design P . Let B be the population-level version of

B̂. Then a linear approximation of t̂c is

t̂c
.
= t̂yHT︸︷︷︸
Op(1)

+B(tx − t̂xHT
)︸ ︷︷ ︸

Op(n−1/2)

+ (B̂−B)(tx − t̂xHT
)︸ ︷︷ ︸

Op(n−1)

, (3.1)

where the second term is of order Op(n
−1/2) and the last term is of order Op(n

−1) as shown by Deville and
Särndal [DS92]. Consequently, the last term can be omitted since it is of order Op(n

−1). Thus, we can
rewrite Equation 3.1 as

t̂c
.
= t̂yHT

+ B(tx − t̂xHT
). (3.2)

Using Equation 3.2, the design-based expectation of t̂c is

Ep(t̂c)
.
= Ep

(
t̂yHT

+ B(tx − t̂xHT
)
)

= ty.

Thus, t̂c is an approximately designed-unbiased estimator of ty.
Again using Equation 3.2, the designed-based asymptotic variance of t̂c is

Vp(t̂c)
.
= Vp

(
tyHT

+ B(tx − t̂xHT
)
)

= Vp(tyHT
−Bt̂xHT

)

= Vp

(∑

i∈s
di(yi −Bxi)

)

=

N∑

i=1

N∑

j=1

(πij − πiπj) (di(yi −Bxi)) (dj(yj −Bxj)) by Equation 1.1.
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Note that since Btx is the true population parameter, V (Btx) = 0. The corresponding variance
estimator is given by

v(t̂c) =
∑

i∈s

∑

j∈s

πij − πiπj
πij

(
di(yi − B̂xi)

)(
dj(yj − B̂xj)

)
. (3.3)

It is acceptable to use the design weights di in the variance estimation but Deville and Särndal suggest
that the calibration weights wi be used in Equation 3.3 as this makes the variance estimator both design-
consistent and nearly model-unbiased [DS92]. Moreover, since the calibration estimator is asymptotically
equivalent to the greg estimator, it can be inferred that calibration estimators are more efficient compared
to the HT estimator if there is a strong correlation between y and x [CSW76].

4 Simulation Study

In this section we test the performance of the calibration estimator using distance functions one and two
from Table 2.1 against the HT estimator.

4.1 Background and simulation set-up

The data used is obtained from the 2008 Survey of Household Spending conducted by Statistics Canada.
There are N = 9787 cases. The study variable, y, represents the cost of food purchased from restaurants
and the auxiliary variable, x represents the household income before taxes. Figure 4.1 shows a plot of y
against x, indicating some positive relationship between restaurant spending and household income, but
not a linear relationship.

The statistic of interest is the mean cost of food purchased from restaurants, µy = ty/N , with
corresponding estimator µ̂y = t̂y/N. We treat all N = 9787 cases as the finite population. Thus, we know
the true population means for y and x are µy = 1545.74 and µx = 71195.52 respectively.
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Figure 4.1: Scatter plot of restaurant spending vs. household income [Can10].
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A simple regression of the form
y = β0 + β1x+ ε

was done to see if the model is a good fit of the data. Residual diagnostics show that the residuals meet the
basic ordinary least squares assumptions. The R2 value is only 0.149, indicating that the model explains
only some of the variance. Even though the model is poor, we are still assured that t̂c is unbiased with
respect to the sampling design as demonstrated in Section 3. The correlation between x and y is ρxy = 0.387,
which is not strong, but still sufficient to imply that the calibration estimators would provide a better
estimate of the total.

The simulation was conducted using the R statistical package. There were B = 1000 simulation runs
in total. For the b-th run (b = 1, . . . , B), a Bernoulli sample is drawn where each unit is selected into the
sample independently with inclusion probability πi = n/N . Here we fix n = 100. The corresponding HT

and calibration estimators of µy are computed: µ̂
(b)
yHT , µ̂

(b)
yc1 , and µ̂

(b)
yc2 . For simplicity, we set the tuning

parameter qi = 1. The weights for µ̂yc1
are given in Equation 2.3. For µ̂yc2

, the weights are of the form

wi = die
λxi ,

where λ is approximated using the constraint in Equation 1.2 with the Newton-Raphson method since there
is no closed-form solution.

4.2 Simulation Evaluation

Since each unit is drawn independently, the variance estimators simplify to

v(µ̂yHT
) = N−2

∑

i∈s

1− πi
π2
i

y2
i ,

v(µ̂yc1) = N−2
∑

i∈s

1− πi
π2
i

(yi − B̂xi)2, and

v(µ̂yc2
) = N−2

∑

i∈s
(1− πi)(wiyi)2.

For each estimator of µ̂y, a 95% confidence interval (µ̂L, µ̂U ) is constructed, where

µ̂L = µ̂y − 1.96
√
v(µ̂y) and

µ̂U = µ̂y + 1.96
√
v(µ̂y).

To compare the performance of each estimator, we look at four metrics: relative bias (RB), mean
square error (mse), average length of the confidence interval (AL), and the coverage probability (CP) of µ̂y.
Each measure is calculated as follows:

RB(µ̂y) =
1

B

B∑

b=1

µ̂
(b)
y − µ
µ

MSE(µ̂y) =
1

B

B∑

b=1

(µ̂(b)
y − µ)2

AL(µ̂y) =
1

B

B∑

b=1

(µ̂
(b)
U − µ̂

(b)
L )

CP (µ̂y) =
1

B

B∑

b=1

I(µ̂
(b)
L < µ < µ̂

(b)
U ).
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4.3 Results

The results of the simulation are presented in Table 4.1. We see the relative bias for all three estimators are
relatively small, but the variance for the HT estimator is significantly larger than the variances for both
calibration estimators, as indicated by their respective mean squared errors. The average length of the
confidence interval for calibration estimator number one is also smaller than the HT estimator, but the
average length of the confidence interval for calibration estimator two is comparable to the HT estimator.
The coverage probabilities for all three confidence intervals are above the 0.90 mark with the coverage
probability of calibration estimator number two close to one. These results are reflected in Figure 4.2, which
show greater variation in the estimates made by the HT estimator than either calibration estimators.
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Figure 4.2: Distribution of estimates made by each estimator (the horizontal line indicates the true mean).

5 Extensions and Discussion

We have presented the concept of calibration estimators proposed by Deville and Särndal, which are simply
a class of linearly weighted estimators, of which the greg is a special member. Furthermore, it has been
shown that all calibration estimators are asymptotically equivalent to the greg [DS92].

Consequently, a limitation of the calibration estimator is that it relies on an implicit linear relationship
between the study variable, y, and the auxiliary variable x. Thus, if there exists a non-linear relationship

Table 4.1: Performance of estimators from simulation study.
Estimator RB MSE AL CP
µ̂yHT

0.011 64669 958.5 0.938
µ̂yc1

0.014 35615 686.8 0.920
µ̂yc2 0.011 36269 969.9 0.988
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between y and x, the calibration estimator does not perform as well as the HT estimator, that is, if we
ignore the auxiliary variable altogether [WS01].

To address this shortcoming, Wu and Sitter developed a model-assisted framework for a model-
calibration technique [WS01]. The idea behind model-calibration is to rely on the predicted values, ŷi,
provided by a model ξ, of either linear or non-linear form. As with the original calibration method proposed
by Deville and Särndal, the weights wi are found by minimizing D(wi, di). Instead of using the original
calibration constraint in Equation 1.2, however, the minimization is done subject to the constraints

∑

i∈s
wi = N and

∑

i∈s
wiŷi =

N∑

i=1

ŷi.

Wu and Sitter showed that the model-calibration estimator using this technique is more efficient in
terms of variance reduction than the simple calibration estimator. It is guaranteed to perform better than
the HT estimator, which is sometimes not the case for the original calibration estimator.

This framework paves the way for the use of a variety of models for estimation assistance and generalized
the work of Briedt and Opsomer [BO00], who introduced the use of local polynomial regression for estimation.
Furthermore, non-parametric models can also be used. Using this framework, Montanari and Ranalli
presented a neural network model-calibrated approach [MR05].

Another limitation of the calibration estimator previously mentioned is that the weights can take on
negative and/or extremely large values. Deville and Särndal recognized this issue and showed how to restrict
the weights to fall within a certain range. Since then, many other methods have been developed to remedy
this issue. One such method proposed by Rao and Singh uses a ridge shrinkage method to readjust the
weights in an iterative fashion to meet the range restriction [RS97].
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Abstract: The problem of determining the eigenvalues and eigenvectors for linear operators acting on
finite dimensional vector spaces is a problem known to every student of linear algebra. This problem has
a wide range of applications and is one of the main tools for dealing with such linear operators. Some of
the results concerning these eigenvalues and eigenvectors can be extended to infinite dimensional vector
spaces. In this article we will consider the eigenvalue problem for the Laplace operator acting on the L2

space of functions on a bounded domain in Rn. We prove that the eigenfunctions form an orthonormal
basis for this space of functions and that the eigenvalues of these functions grow without bound.

1 Notation

In order to avoid confusion we begin by making explicit some notation that we will frequently use.

For a bounded domain Ω ⊂ Rn we let L2(Ω) be the usual real Hilbert space of real valued square

integrable functions Ω, with inner product 〈u, v〉2 :=
∫

Ω
uv dx and norm ‖u‖2 :=

(∫
Ω
u2 dx

)1/2
. We will also

encounter the Sobolev space, denoted H1,2
0 (Ω), which is a similar space of real valued function with inner

product and norm given instead by

〈u, v〉1,2 =

∫

Ω

(∇u · ∇v + uv) dx

‖u‖1,2 =

(∫

Ω

(
|∇u|2 + u2

)
dx

)1/2

.

Since this space is somewhat less common than L2(Ω), the appendix reviews some elementary properties
and theorems concerning this space which are useful in our analysis.

Our problem of interest in this article concerns the Laplace operator. This is a differential operator
denoted by ∆ and is given by

∆u =
n∑

i=1

∂2u

∂x2
i

,

where u is a sufficiently smooth real valued function, u : Ω→ R and x1, x2, . . . xn are the coordinates
for Ω ⊂ Rn.
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2 The Eigenvalue Problem

2.1 The eigenvalue equation

We consider the eigenvalue problem for the Laplacian on a bounded domain Ω. Namely, we look for pairs
(λ, u) consisting of a real number λ called an eigenvalue of the Laplacian and a function u ∈ C2(Ω) called
an eigenfunction so that the following condition is satisfied

{
∆u+ λu = 0 in Ω
u = 0 on ∂Ω.

(2.1)

Such eigenvalue/eigenfunction pairs have some very nice properties, some of which we will explore here.
One fact of particular interest is that they form an orthonormal basis for L2(Ω). This is an important and
useful result to which we will work towards in this article.

Firstly, we will focus our attention to a weaker version of Equation 2.1. That is, we will examine a
condition that is a necessary, but not sufficient, consequence of Equation 2.1. In particular, we will look for
solutions u in the Sobolev space H1,2

0 (Ω) that obey the following equation for all test functions v ∈ H1,2
0 (Ω):

∫

Ω

∇u · ∇v dx = λ

∫

Ω

uv dx. (2.2)

The following proposition shows that this condition is indeed weaker than Equation 2.1.

Proposition 2.1. If u ∈ C2(Ω) satisfies Equation 2.1 then Equation 2.2 is satisfied too.

Proof. Suppose u is a twice differentiable function u ∈ C2(Ω) that satisfies Equation 2.1. Given any
v ∈ H1,2

0 (Ω), by definition of H1,2
0 (Ω) (see Appendix A), there is a sequence vk ∈ C1

0 (Ω) so that vk → v in
the H1,2

0 norm. We have that for any vk

∫

Ω

(∆u+ λu)vk dx = 0 (2.3)

∫

Ω

(∆u)vk dx = −λ
∫

Ω

uvk dx

−
∫

Ω

∇u · ∇vk dx = −λ
∫

Ω

uvk dx,

where the last swap of derivatives is justified by the divergence theorem applied to the vector field vk∇u
and utilizing the fact that vk ∈ C1

0 (Ω) is compactly supported and so vk vanishes on the boundary
∂Ω. By definition of the norm on H1,2

0 (Ω) we have that for any f ∈ H1,2
0 (Ω) that ‖f‖2 ≤ ‖f‖1,2 and

‖∇f‖2 ≤ ‖∇f‖1,2 which means that since vk → v in H1,2
0 (Ω) we automatically have that vk → v and

∇vk → ∇v in L2(Ω). In particular, 〈u, vk〉2 → 〈u, v〉2 and 〈∇u,∇vk〉2 → 〈∇u,∇v〉2. Taking the limit as
k →∞ of the equality in Equation 2.3 and using these limits gives us precisely Equation 2.2 as desired.

Remark 2.2: Even more interesting perhaps is that the converse also holds. The weak functions u ∈ H1,2
0 (Ω)

that satisfy Equation 2.2 can be shown, via some regularity results, to be smooth functions in C∞(Ω) and
will also solve the original eigenvalue problem [McO03]. The proof of these regularity results is technical and
would lead us too far from the eigenvalue problem which we investigate here, so we will content ourselves to
simply proving results about the eigenfunctions that solve the weak equation, Equation 2.2, in this article.

The advantage of passing from the usual eigenvalue problem, Equation 2.1, to this weak equation is
that we have moved from smooth functions to the Sobolev space H1,2

0 (Ω). In this restricted space, we can
utilize certain results that would not hold in general and will be crucial to our analysis. The main tool we
gain in this space is the Rellich compactness theorem, which allows us to find convergent subsequences
of bounded sequences in H1,2

0 (Ω). Without this powerful tool, it would be impossible to prove the results
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which we strive for. For this reason, we will use Equation 2.2 as our defining equation rather than Equation
2.1. From now on when we refer to “eigenfunctions” or “eigenvalues” we mean solutions in H1,2

0 (Ω) of
Equation 2.2 (rather than solutions of Equation 2.1). We will also refer to Equation 2.2 as “the eigenvalue
equation” to remind ourselves of its importance.

Lemma 2.1. If u1 and u2 are eigenfunctions with eigenvalues λ1 and λ2 respectively and if λ1 6= λ2 then
〈u1, u2〉2 = 0 and moreover 〈∇u1,∇u2〉2 = 0

Proof. Since u1 and u2 are both eigenfunctions, they satisfy the eigenvalue equation by definition. Plugging
in v = u2 into the eigenvalue equation for u1 and v = u1 into the eigenvalue equation for u2 gives

∫

Ω

∇u1 · ∇u2 dx = λ1

∫

Ω

u1u2 dx

∫

Ω

∇u2 · ∇u1 dx = λ2

∫

Ω

u2u1 dx.

Subtracting the second equations from the first gives

(λ1 − λ2)

∫

Ω

u2u1 dx = 0,

so the condition λ1 6= λ2 allows us to cancel out λ1 − λ2 to conclude
∫

Ω
u2u1 = 〈u1, u2〉2 = 0 as desired.

Finally, notice that 〈∇u1,∇u2〉 =
∫

Ω
∇u1 · ∇u2 dx = λ1

∫
Ω
u1u2 dx = 0 too.

2.2 Constrained optimization and the Rayleigh quotient

Consider now the functionals from H1,2
0 (Ω)→ R

F (u) =

∫

Ω

|∇u|2 dx = ‖∇u‖22

G(u) =

∫

Ω

u2 dx− 1 = ‖u‖22 − 1.

These functionals have an intimate relationship with the eigenvalue problem. The following results
makes this precise.

Lemma 2.2. If u ∈ H1,2
0 (Ω) is a local extremum of the functional F subject to the condition G(u) = 0, then

u is an eigenfunction with eigenvalue λ = F (u).

Proof. The proof of this relies on the Lagrange multiplier theorem in the calculus of variations setting (this
result is exactly analogous to the usual Lagrange multiplier theorem on Rn with the first variation playing
the role of the gradient). The Lagrange multiplier theorem states that if F and G are C1-functionals on
a Banach space X, and if x ∈ X is a local extremum for the functional F subject to the condition that
G(x) = 0 then either δG(x)y = 0 for all y ∈ X or there exists some λ ∈ R so that δF (x)y = λδG(x)y for all
y ∈ X. (Here δF (u)v denotes the first variation of the functional F at the point u and in the direction of v.)

We use this theorem with the space H1,2
0 (Ω) serving the role of our Banach space, and F,G as defined

above playing the role of the functionals under consideration. The first variation of F and G are easily
computed
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δF (u)v = lim
ε→0

1

ε
(F (u+ εv)− F (u))

= lim
ε→0

1

ε

(∫

Ω

|∇u+ ε∇v|2 dx−
∫

Ω

|∇u|2 dx
)

= lim
ε→0

1

ε

(∫

Ω

|∇u|2 + 2ε∇u · ∇v + ε2|∇v|2 − |∇u|2 dx
)

= lim
ε→0

(∫

Ω

2∇u · ∇v + ε|∇v|2 dx
)

= 2

∫

Ω

∇u · ∇v dx = 2 〈∇u,∇v〉2 .

A similar calculation yields

δG(u)v = 2

∫

Ω

uv dx = 2 〈u, v〉2 .

Notice that δG(u)u = 2 〈u, u〉2 = 2‖u‖2 = 2 by the constraint G(u) = 0. This means that δG(u)v is

not identically zero for all v ∈ H1,2
0 (Ω). Hence, since u is given to be a local extremum of F subject to

G(u) = 0 and δG(u) is not identically zero, the Lagrange multiplier theorem tells us that there exists a λ so
that for all v ∈ H1,2

0 (Ω) we have

δF (u)v = λδG(u)v

2 〈∇u,∇v〉2 = 2λ 〈u, v〉2 .
Cancelling out the constant of 2 from both sides leaves us with exactly the eigenvalue equation! Hence

u is an eigenfunction of eigenvalue λ as desired. Moreover, we can calculate λ directly using the fact that
the above holds for all v ∈ H1,2

0 (Ω):

F (u) = 〈∇u,∇u〉2
= λ 〈u, u〉2
= λ,

where we have used 〈u, u〉2 = G(u) + 1 = 1 since G(u) = 0 is given.

Theorem 2.3. There exists some u ∈ H1,2
0 (Ω) so that u is a global minimum for F subject to the constraint

G(u) = 0.

Proof. Let us denote by C the constraint set we are working on, namely C = {u ∈ H1,2
0 (Ω) : G(u) = 0}. Notice

that G(u) = 0 precisely when ‖u‖2 = 1 so C is the set of unit norm functions. Let I = inf{F (u) : u ∈ C} be
the infimum of F taken over this constraint set. We will prove that this infimum is actually achieved at some
point u ∈ C. By the definition of an infimum, we can find a sequence {uj}∞j=1 ⊂ C so that F (uj) ≤ I + 1

j .

In particular then, limj→∞ F (uj) = I and we also have that F (uj) = ‖∇uj‖22 ≤ I + 1 for all j ∈ N. By the
Poincaré inequality (Theorem A.1) we have then that ‖uj‖2 ≤ C‖∇uj‖2 ≤ C(I + 1) for some constant C.
Adding these inequalities together we see that

‖uj‖21,2 =

∫

Ω

|∇uj |2 + u2
j dx

= ‖∇uj‖22 + ‖uj‖22
≤ (I + 1)2 + C2(I + 1)2

<∞.
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In particular, this shows that uj is a bounded sequence in H1,2
0 (Ω). Calling upon the Rellich compactness

theorem (Theorem A.2), we know that we can find a subsequence {ujk}∞k=1 of {uj}∞j=1 that converges in the

L2 sense to some element u ∈ {uj}∞j=1 ⊂ L2(Ω). Moreover, since H1,2
0 (Ω) is a Hilbert space, every bounded

sequence contains a weak-convergent subsequence that converges in the weak topology on H1,2
0 (Ω). (It is a

fact from the theory of functional analysis that the existence of such weak-convergent subsequences in a
Banach space is equivalent to that Banach space being reflexive. As Hilbert spaces are self-dual by the
Riesz representation theorem, they are certainly reflexive and hence we can always find such subsequences.)
Hence, we may find a subsequence of {ujk}∞k=1 that converges in the weak topology of H1,2

0 (Ω) to some

u′ ∈ H1,2
0 (Ω) (for notational ease, we will continue to denote this subsequence by {ujk}∞k=1). Of course, this

subsequence still converges to u in L2(Ω). Since ujk → u in L2(Ω), it follows that u = u′ i.e. we have that

ujk → u in the weak topology on H1,2
0 (Ω). This allows us to prove the following claim.

Claim. ‖u‖1,2 ≤ lim inf
k→∞

‖ujk‖1,2

Proof of claim. Since ujk → u in the weak topology on H1,2
0 (Ω), we have

‖u‖21,2 = 〈u, u〉1,2
= lim
k→∞

〈u, ujk〉1,2
= lim inf

k→∞
〈u, ujk〉1,2

≤ lim inf
k→∞

‖u‖1,2‖ujk‖1,2
= ‖u‖1,2 lim inf

k→∞
‖ujk‖1,2.

Cancelling out ‖u‖1,2 from both sides yields the desired result.

Using the above inequality and the fact that ‖u‖2 = limk→∞ ‖ujk‖2 = 1 since ujk → u in L2(Ω), we
can compute

F (u) =

∫

Ω

|∇u|2 dx

=

∫

Ω

(
|∇u|2 + u2

)
dx−

∫

Ω

u2 dx

= ‖u‖21,2 − ‖u‖22
≤ lim inf

k→∞
‖ujk‖21,2 − lim ‖ujk‖22

= lim inf
k→∞

(
‖ujk‖21,2 − ‖ujk‖22

)

= lim inf
k→∞

(∫

Ω

(
|∇ujk |2 + ujk

2
)
dx−

∫

Ω

ujk
2 dx

)

= lim inf
k→∞

(∫

Ω

|∇ujk |2 dx
)

= lim inf
k→∞

F (ujk)

≤ lim inf
k→∞

(
I +

1

jk

)

≤ I,

but now, since ‖u‖2 = 1, we have u ∈ C so we have F (u) ≥ I = inf{F (u) : u ∈ (C)}. Hence, combining the
inequalities, we see that F (u) = I achieves the minimum for F restricted to C as desired.
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Remark 2.4: Theorem 2.3 shows that u is a global minimum of F subject to G(u) = 0. In particular then, it
is a local extremum for F subject to G(u) = 0 so applying the result of Lemma 2.2 informs us that u is an
eigenfunction with eigenvalue λ = F (u). Since this is the smallest possible value of F subject to G(u) = 0,
this is the smallest possible eigenvalue one could obtain. For this reason we shall call this eigenvalue λ1 and
the associated eigenfunction u1.

Remark 2.5: By the definition of F , we notice that for any u ∈ H1,2
0 (Ω) and any scalar c ∈ R, we have

F (cu) = c2F (u). This almost-linearity for scalars means that we can remove the condition G(u) = 0 from
consideration in some sense by normalizing F by ‖u‖2. Notice that

F (u)

‖u‖22
=

∫
Ω
|∇u|2 dx
‖u‖22

=

∫

Ω

∣∣∣∣
∇u
‖u‖

∣∣∣∣
2

dx

= F

(
u

‖u‖

)
.

Hence, minimizing F (u) subject to ‖u‖ = 1 is the same as minimizing the quotient
∫
Ω
|∇u|2 dx∫
Ω
u2 dx

with u

running in all of H1,2
0 (Ω). This quotient is known as the Rayleigh quotient. This gives us a more notationally

concise way to write down our smallest eigenvalue

λ1 = inf
u∈H1,2

0 (Ω)

∫
Ω
|∇u|2 dx∫
Ω
u2 dx

.

2.3 The sequence of eigenvalues

To find the next eigenvalue, we can do something very similar. We first notice that the second smallest
eigenvalue will have an eigenfunction that is orthogonal to u1 by the result of Lemma 1, so we can restrict
the search for this eigenfunction to the subspace X1 = span{u1}⊥ = {u ∈ H1,2

0 (Ω) : 〈u, u1〉2 = 0}. Since

this is the null space of the continuous operator 〈·, u1〉2, this is a closed subspace of H1,2
0 (Ω) and hence can

be thought of as a Hilbert space in its own right. By modifying the proof of Lemma 2 slightly by using X1

as our Banach space rather than all of H1,2
0 (Ω), we see that any u ∈ X1 that is a local extrema for F subject

to G(u) = 0 will be an eigenfunction of eigenvalue λ = F (u). By modifying the argument of Theorem 1
slightly by changing the restriction set C to be C = {u ∈ X1 : G(u) = 0, the identical argument shows that
there is some u ∈ C that achieves the minimum for F on this restricted set. This will be an extremum for
F on X1 subject to the restriction G(u) = 0, so by modified Lemma 2 this will be an eigenfunction, call it
u2. By arguments similar to the above, we find the associated eigenvalue λ2 is

λ2 = min{F (u) : u ∈ C ⊂ X1}

= inf
u∈X1

∫
Ω
|∇u|2 dx∫
Ω
u2 dx

.

Since X1 ⊂ H1,2
0 (Ω), the Rayleigh quotient definition above tells us immediately that λ1 ≤ λ2.

Repeating this same idea inductively, we can define Xn = span{u1, u2, . . . , un}⊥ = {u ∈ H1,2
0 (Ω) :

〈u, ui〉2 = 0∀i ∈ 1, . . . , n} and by appropriately modifying Lemma 2.2 and Theorem 2.3 we will be able to
justify the fact that the nth eigenvalue can be found by

λn = inf
u∈Xn

∫
Ω
|∇u|2 dx∫
Ω
u2 dx

.
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Moreover, we can always find a normalized eigenfunction un that achieves this lower bound. Since
H1,2

0 (Ω) ⊃ X1 ⊃ X2 . . ., we can see that this generates a sequence of eigenvalues 0 ≤ λ1 ≤ λ2 ≤ λ3 . . .
and eigenfunction u1, u2, u3, . . . which are generated in such a way that they are all mutually orthogonal
with respect to the L2(Ω) inner product (our construction via the Rayleigh quotient restricted to Xn

automatically orthogonalizes the eigenspaces of the degenerate eigenvalues). Moreover, these eigenfunctions
have been normalized so that ‖un‖2 = 1 and also, by invoking the result of Lemma 2.1, we have then that
‖∇un‖2 = λn‖un‖2 = λn. The following theorem shows that these eigenvalues tend to infinity.

Theorem 2.6. lim
n→∞

λn =∞

Proof. This is another result that follows with the help of the Rellich compactness theorem. Since the
sequence λi is non-decreasing, the only way that they could not tend to infinity is if they are bounded above.
Suppose by contradiction that there is some constant M so that λn < M for all n ∈ N. Notice then that

‖∇un‖22 =

∫

Ω

∇un · ∇un dx

= λn

∫

Ω

u2
n dx

= λn

≤M,

where we have used the eigenvalue equation with v = un and the fact that ‖un‖2 = 1. Notice now that the
sequence of eigenfunctions is bounded in H1,2

0 (Ω) since

‖un‖21,2 =

∫

Ω

|∇un|2 + u2
n dx

= ‖∇un‖22 + ‖un‖22
≤M + 1.

By the Rellich compactness theorem, we can find a convergent subsequence unk
converging to some

element of L2(Ω). This subsequence, being convergent, is an L2-Cauchy sequence, meaning in particular
that ‖unk

− unk+1
‖22 → 0 as n→∞. But orthonormality of un prohibits this as we have

‖unk
− unk+1

‖22 = ‖unk
‖22 − 2

〈
unk

, unk+1

〉
+ ‖unk+1

‖22
= 1− 0 + 1

> 0.

This contradiction shows that our original assumption that the eigenvalues are bounded above by
some M is impossible. Since the eigenvalues are nondecreasing, this is enough to show limn→∞ λn =∞, as
desired.

2.4 Orthonormal basis

Finally, we have the machinery to prove that the eigenfunctions are not only an orthonormal set in L2(Ω),
but they are are a maximal orthonormal set: an orthonormal basis for L2(Ω).

Theorem 2.7. For any f ∈ L2(Ω), we can write f =
∞∑

n=1

αnun where αn = 〈f, un〉2, where this infinite sum

converges to f in the L2(Ω) norm.
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Proof. We first prove the result for functions f ∈ H1,2
0 (Ω) so that we may freely consider the (weak)

derivative of f . Since H1,2
0 (Ω) is dense in L2(Ω), this result can be extended to apply to any function

f ∈ L2(Ω). Given any f ∈ H1,2
0 (Ω), let ρN be the N -th error term between f and the partial sum∑N

n=1 αnun, namely ρN = f −∑N
n=1 αnun. To show that this sum converges to f in L2(Ω) is tantamount

to showing that ‖ρN‖2 → 0 as N →∞. Firstly notice that 〈∇ρN ,∇uk〉2 = 0 for every 1 ≤ k ≤ N since

〈∇ρN ,∇uk〉2 =

〈
∇f −

N∑

n=1

αn∇un,∇uk
〉

2

= 〈∇f,∇uk〉2 −
N∑

n=1

αn 〈∇un,∇uk〉2

= λk 〈f, uk〉2 −
N∑

n=1

αn‖∇un‖22δnk

= λkαk − αk‖∇uk‖22
= λkαk − αkλk
= 0,

where we have used the eigenvalue equation with v = f and the orthonormality of un. In a very similar
way, we have that 〈ρN , uk〉2 = 0 for every 1 ≤ k ≤ N since

〈ρN , uk〉2 =

〈
f −

N∑

n=1

αnun, uk

〉

2

= 〈f, uk〉2 −
N∑

n=1

αn 〈un, uk〉2

= αk −
N∑

n=1

αnδnk

= 0.

Since this holds for all 1 ≤ k ≤ N we conclude that ρN ∈ span{u1, u2, . . . , uN}⊥ = XN . We hence have the
following inequality which follows from the Rayleigh quotient definition of λN+1

∫
Ω
|∇ρN |2 dx∫
Ω
ρ2
N dx

≥ inf
u∈XN

∫
Ω
|∇u|2 dx∫
Ω
u2 dx

= λN+1,

and hence:
‖∇ρN‖22 ≥ λN+1‖ρN‖22.

This inequality is the crux of the proof, for we see that

‖∇f‖22 = ‖∇ρN +
N∑

n=1

αn∇un‖22

= ‖∇ρN‖22 + ‖
N∑

n=1

αn∇un‖22

≥ λN+1‖ρN‖22 + 0,
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where we have used the fact that 〈∇ρN ,∇uk〉2 = 0 for every 1 ≤ k ≤ N to enable the Pythagorean theorem
in the second equality. Now the fact that the λN+1 →∞ forces ‖ρN‖2 → 0 because otherwise, the right
hand side of the equation diverges as N →∞, while the left hand side is independent of N and finite as

f ∈ H1,2
0 (Ω), a contradiction. Hence ‖ρN‖2 → 0 meaning that

∞∑

n=1

αnun converges to f in the L2(Ω) sense,

as desired.
To extend this result from functions f ∈ H1,2

0 (Ω) as above to more general f ∈ L2(Ω) we use the fact
that H1,2

0 (Ω) is dense in L2(Ω). (This is not surprising since the even more restrictive set C∞0 (Ω) can be
shown to be dense in L2(Ω)). Given any f ∈ L2(Ω), we may find some family {fε} ⊂ H1,2

0 (Ω) so that
fε → f in L2(Ω) as ε→ 0. In particular then, by the Cauchy Shwarz inequality, we have for each n ∈ N
that 〈f − fε, un〉2 → 0 as ε→ 0 and hence αn,ε = 〈fε, un〉 → αn = 〈f, un〉 in this limit. By careful addition
and subtraction by zero, and by use of the Minkowski inequality on L2(Ω) we have

∥∥∥∥∥f −
N∑

n=1

αnun

∥∥∥∥∥
2

≤ ‖f − fε‖2 +

∥∥∥∥∥fε −
N∑

n=1

αn,εun

∥∥∥∥∥
2

+

∥∥∥∥∥
N∑

n=1

(αn,ε − αn)un

∥∥∥∥∥
2

,

but now by Bessel’s inequality, which holds for any orthonormal set (such as the set un by their construction),
applied to the function fε − f , we have that

∥∥∥∥∥
N∑

n=1

(αn,ε − αn)un

∥∥∥∥∥
2

≤
∥∥∥∥∥
∞∑

n=1

(αn,ε − αn)un

∥∥∥∥∥
2

=

∥∥∥∥∥
∞∑

n=1

〈fε − f, un〉2

∥∥∥∥∥
≤ ‖f − fε‖2,

which is then added to first inequality to get

∥∥∥∥∥f −
N∑

n=1

αnun

∥∥∥∥∥
2

≤ 2‖f − fε‖2 +

∥∥∥∥∥fε −
N∑

n=1

αn,εun

∥∥∥∥∥
2

.

By taking ε small enough so that 2‖f − fε‖2 becomes arbitrarily small and N large enough so that∥∥∥fε −
∑N
n=1 αn,εun

∥∥∥
2

is arbitrarily small, we can bound
∥∥∥f −

∑N
n=1 αnun

∥∥∥
2

to be arbitrarily small as well,

and hence the L2 difference between f and its N -th partial eigenfunction expansion must vanish in the

limit N → ∞. This shows that any f ∈ L2(Ω) can be written as f =

∞∑

n=1

αnun in the L2 sense, where

αn = 〈f, un〉2, meaning that the eigenfunctions do indeed form an orthonormal basis for all of L2(Ω).
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A Sobolev spaces

In this appendix we will fill in some background concerning the simplest Sobolev space, H1,2
0 (Ω), which

is used in our investigation of the eigenvalues/eigenfunction pairs above. We also prove the Poincaré
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inequality, which we call on in this analysis and we very roughly motivate the ideas in the proof of
the Rellich compactness theorem which is in some ways the cornerstone of many of the results about
eigenvalue/eigenfunction pairs.

A.1 The Sobolev space H1,2
0 (Ω)

The Sobolev space H1,2
0 (Ω) is a refinement of L2(Ω) whose additional structure is of some use to us. One

defines H1,2
0 (Ω) by first defining a new inner product on the the set of continuously differentiable, compactly

supported functions C1
0 (Ω), namely the inner product 〈·, ·〉1,2:

〈u, v〉1,2 =

∫

Ω

(∇u · ∇v + uv) dx.

The induced norm from this inner product is

‖u‖1,2 =
√
〈u, u〉1,2 =

(∫

Ω

(
|∇u|2 + u2

)
dx

)1/2

.

Just as C1
0 (Ω) is not complete in the usual norm 〈·, ·〉2 from L2(Ω), C1

0 (Ω) with this norm is not
complete. However, by the definition of this norm, any sequence {uk}∞k=1 which is Cauchy in the ‖ ·‖1,2 norm
will be Cauchy in the L2(Ω) norm too. This is by virtue of the fact that ‖uk − uj‖2 ≤ ‖uk − uj‖1,2 → 0

since uk is ‖ · ‖1,2-Cauchy. (This inequality holds as the H1,2
0 (Ω) norm has an extra non-negative term

|∇u|2 in the integral, which gives a nonnegative contribution to this norm). Since L2(Ω) is complete, we
conclude that such a Cauchy sequence converges to some u ∈ L2(Ω). By including all the limits of all the
‖ · ‖1,2-Cauchy sequences, we get an honest Hilbert space which we denote by H1,2

0 (Ω), called the Sobolev
space. In other words, the definition of this Sobolev space is

H1,2
0 (Ω) = C1

0 (Ω)
‖·‖1,2

.

This is the completion of C1
0 (Ω) with respect to the ‖ · ‖1,2 norm. As remarked before, this completion

consists of adding in some L2(Ω) functions, and hence the resulting space is a subset of L2(Ω).

A.2 Weak derivatives on H1,2
0 (Ω)

Notice that by the above definition, the functions u ∈ H1,2
0 (Ω) do not necessarily have derivatives in the

classical sense, but they do have weak derivatives defined by ∂u
∂xj

= limk→∞
∂uk

∂xj
where uk is any sequence

in C1
0 (Ω) which converges to u in L2(Ω). Notice that this is indeed the weak derivative since for any test

function v ∈ C∞0 (Ω) we have that

∫

Ω

(u− uk)

(
− ∂v

∂xj

)
dx =

〈
u− uk,−

∂v

∂xj

〉

2

≤ ‖u− uk‖2
∣∣∣∣
∣∣∣∣
∂v

∂xj

∣∣∣∣
∣∣∣∣
2

→ 0,

and hence we have that

∫

Ω

u

(
− ∂v

∂xj

)
dx =

∫

Ω

lim
k→∞

uk

(
− ∂v

∂xj

)
dx

=

∫

Ω

(
lim
k→∞

∂uk
∂xj

)
v dx,
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where the swap of derivatives is justified by the divergence theorem because both functions are at least
C1

0 (Ω) and have compact support. Since this holds for any test function v, then u is the weak solution to
∂u
∂xj

= limk→∞
∂uk

∂xj
and this is what we mean when we say the weak derivative of u exists and is equal to

this limit.

A.3 The Poincaré inequality

Theorem A.1 (Poincaré Inequality). If Ω is a bounded domain, then there is a constant C depending only
on Ω so that

∫

Ω

u2 dx ≤ C
∫

Ω

|∇u|2 dx

for all u ∈ C1
0 (Ω) and by completion for all u ∈ H1,2

0 (Ω).

Proof. For u ∈ C1
0 (Ω), we find an a ∈ R large enough so that the cube Q = {x ∈ Rn : |xj | < a, 1 ≤ j ≤ n}

contains Ω. Performing an integration by parts in the x1-direction then gives (the non-integral terms vanish
since u = 0 on the boundary of Q)

∫

Ω

u2 dx =

∫

Ω

1 · u2 dx

= −
∫

Ω

x1
∂u2

∂x1
dx

= −2

∫

Ω

x1u
∂u

∂x1
dx

= 2a

∫

Ω

|u|| ∂u
∂x1
| dx.

Using the Cauchy-Schwarz inequality for L2(Ω) now gives

∫

Ω

u2 dx ≤ 2a

∫

Ω

|u|| ∂u
∂x1
| dx

≤ 2a‖u‖2‖
∂u

∂x1
‖2

≤ 2a‖u‖2‖∇u‖2.

Dividing through by ‖u‖2 gives the desired result with C = (2a)2. For u ∈ H1,2
0 (Ω), we find a sequence

{uk}∞k=1 ⊂ C1
0 (Ω) converging to u in the H1,2

0 (Ω) norm (this is by definition of H1,2
0 (Ω)). We have then

that ‖u − uj‖2 ≤ ‖u − uj‖1,2 → 0 as j → ∞ and similarly ‖∇u − ∇uj‖2 ≤ ‖u − uj‖1,2 → 0. Hence, by
making use of the Cauchy-Schwarz inequality, we have that ‖uj‖2 → ‖u‖2 and ‖∇uj‖2 → ‖∇u‖2 in the
limit j →∞, which allows us to use the Poincaré inequality on uj ∈ C1

0 (Ω) in the limit j →∞ to conclude
that

∫
Ω
u2 dx ≤ C

∫
Ω
|∇u|2 dx as desired.

Theorem A.2 (Rellich Compactness). For a bounded domain Ω, the inclusion map I : H1,2
0 (Ω) → L2(Ω)

is a compact operator meaning that it takes bounded sets in H1,2
0 (Ω) to totally bounded sets (also

known as precompact) in L2(Ω). By the sequential compactness characterization of compact sets,
this is equivalent to saying that for any bounded sequence {un}∞n=1 ∈ H1,2

0 (Ω), there is a subsequence
{unk

}∞k=1 that converges in the L2 sense to some u ∈ L2(Ω).



Eigenvalues and Eigenfunctions of the Laplacian 34

Proof sketch. To do in full detail, the proof is rather long and technical, so we will omit most of the details
and instead sketch the main themes of the proof. Given any bounded sequence {fn}∞n=1 ⊂ H1,2

0 (Ω), the
idea is to first smooth out the sequence of functions by convolving them with a so-called mollifier function
ηε depending on a choice of ε so that the resultant sequence of smoothed (also called mollified) functions
{ηε ∗ fn}∞n=1 is better behaved than the original sequence {fn}∞n=1 is. By choosing ηε appropriately, so that
ηε is bounded and with bounded derivative, one can verify that the resulting sequence of smoothed functions
{ηε ∗ fn}∞n=1 will also be bounded and with bounded derivative. This derivative bound is enough to see
that this family is equicontinuous, so one can invoke the Arzela-Ascoli theorem to see that these smoothed
functions have a uniformly convergent subsequence. Using the boundedness of {fn}∞n=1 in H1,2

0 (Ω) allows
one to argue that as ε→ 0, these mollified functions converge uniformly back to the original sequence of
functions. Since the mollified functions have convergent subsequences and since the mollified functions
return to the original sequence, a little more analysis allows one to verify that the original sequence will
enjoy a convergent subsequence as well.

Remark A.3: This theorem is sometimes filed under the title “The Kondrachov compactness theorem”, after
V. Kondrachov who generalized Franz Rellich’s result in the more general compact map H1,p

0 (Ω) into Lq(Ω)
whenever 1 ≤ q ≤ np/(n− p).
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Abstract: Motivated by the search for “almost integers”, we describe the algebraic integers known as
Pisot numbers, and explain how they can be used to easily find irrational values that can be arbitrarily
close to whole numbers. Some properties of the set of Pisot numbers are briefly discussed, as well as
some applications of these numbers to other areas of mathematics.

1 Introduction

It is a curious occurrence when an expression that is known to be a non-integer ends up having a value
surprisingly close to a whole number. Some examples of this phenomenon include:

eπ − π = 19.9990999791 . . .
(

23

9

)5

= 109.0000338701 . . .

88 ln 89 = 395.0000005364 . . .

These peculiar numbers are often referred to as “almost integers”, and there are many known examples.
Almost integers have attracted considerable interest among recreational mathematicians, who not only try
to generate elegant examples, but also try to justify the unusual behaviour of these numbers. In most cases,
almost integers exist merely as numerical coincidences, where the value of some expression just happens to
be very close to an integer. However, sometimes there actually is a clear, mathematical reason why certain
irrational numbers should be very close to whole numbers. In this paper, we’ll look at the a set of numbers
called the Pisot numbers, and how they can be used to systematically construct infinitely many examples of
almost integers.

In Section 2, we will prove a result about powers of roots of polynomials, and use this as motivation to
define the Pisot numbers. We will also show how Pisot numbers can generate many almost integers. In
Section 3, we will explore the set S of Pisot numbers in more detail, and in Section 4, we will list some other
properties and applications of the Pisot numbers. Finally, Section 5 will present some concluding remarks.

2 Pisot Numbers and Almost Integers

We begin by recalling some definitions from the study of polynomials.

Definition 2.1. A number is called an algebraic integer if it is the root of some polynomial of the form
f(x) = xn + an−1x

n−1 + · · ·+ a1x+ a0, where the coefficients ai are all integers. If f(x) is the minimal
polynomial for some algebraic integer α, then the roots of f(x) other than α are called the Galois
conjugates of α.
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The main result used to motivate the construction of Pisot numbers is that for any monic polynomial
f(x), the sum of the powers of the roots of f(x) will always be exactly an integer. This is made precise in
the following theorem.

Theorem 2.1. Let f(x) be a monic, irreducible polynomial of degree d with (not necessarily distinct) roots
θ1, . . . , θd. Then θn1 + · · ·+ θnd is an integer for all integers n ≥ 0.

Proof. We may write f(x) = (x− θ1) · · · (x− θd). Taking the natural logarithm of both sides gives

log f(x) =
d∑

i=1

log (x− θi).

Differentiating, we obtain
d

dx
log f(x) =

f ′(x)

f(x)
=

1

x− θ1
+ · · ·+ 1

x− θd
.

If we now substitute 1/x for x in the above equation, then we get

f ′(1/x)

f(1/x)
=

1

1/x− θ1
+ · · ·+ 1

1/x− θd
,

and so

xd−1f ′(1/x)

xdf(1/x)
=

1

1− xθ1
+ · · ·+ 1

1− xθd

=

d∑

i=1

1

1− xθi
.

By expressing the ratio 1/(1− xθi) as an infinite geometric series, this equation becomes

xd−1f ′(1/x)

xdf(1/x)
=

d∑

i=1

∞∑

n=0

xnθni

=

∞∑

n=0

(
d∑

i=0

θni

)
xn

=

∞∑

n=0

tnx
n,

where we let

tn =
d∑

i=0

θni .

To prove the theorem, it remains to show that tn ∈ Z for all integers n ≥ 0.
We do this by first writing f(x) in a different way. There exist integers a0, . . . , ad−1 such that we may

write
f(x) = xd + ad−1x

d−1 + · · ·+ a1x+ a0

and so
f ′(x) = dxd−1 + (d− 1)ad−1x

d−2 + · · ·+ 2a2x+ a1.

This gives us that

xd−1f ′(1/x) = d+ (d− 1)ad−1x+ · · ·+ 2a2x
d−2 + a1x

d−1

xdf(1/x) = 1 + ad−1x+ · · ·+ a1x
d−1 + a0x

d.
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Putting all of this together, we get

xd−1f ′(1/x)

xdf(1/x)
=
∞∑

n=0

tnx
n

xd−1f ′(1/x) =
(
xdf(1/x)

) ∞∑

n=0

tnx
n

d+ (d− 1)ad−1x+ · · ·+ a1x
d−1 =

(
1 + ad−1x+ · · ·+ a0x

d
) ∞∑

n=0

tnx
n.

We now compare coefficients on both sides of this equation, to obtain the system

d = t0

(d− 1)ad−1 = t1 + ad−1t0

(d− 2)ad−2 = t2 + ad−1t1 + ad−2t2

...

from which we see that all of the ti do, in fact, take integer values. Hence θn1 + · · ·+ θnd ∈ Z for all integers
n ≥ 0, as desired.

We now present the definition of a Pisot number. These numbers were first studied by Thue [Thu12]
in 1912, and were later looked at by Hardy [Har19] in 1919. However, they only gained popularity in the
wider mathematical community after Pisot’s dissertation concerning them in 1938 [Pis38].1

Definition 2.2. A Pisot number is a real, algebraic integer larger than 1 whose Galois conjugates all have
absolute value less than 1.

Pisot numbers can be identified by looking at the roots of their minimal polynomials on the complex
plane. If f(x) is the minimal polynomial for a Pisot number α, then all of the roots of f(x) lie strictly
within the unit disc on the complex plane, except for α, which lies outside the disc on the positive real axis.

Using Theorem 2.1, we will show that by taking high powers of Pisot numbers, we obtain values that
are very close to whole numbers. First, however, we need to make more precise what we mean by “closeness
to a whole number”.

Definition 2.3. Given a real number x, we define the distance (from x) to the nearest integer to be
‖x‖ = |x− n|, where n is taken to be the closest integer to x.

For example, we have ‖7‖ = 0, ‖π‖ = 0.14159 . . ., and ‖2.6‖ = 0.4. Note that for any real number x,
‖x‖ ranges between 0 and 0.5, and ‖x‖ = 0 if and only if x is an integer. Effectively, ‖x‖ measures how
close x is to being a whole number, with small values of ‖x‖ corresponding to almost integers.

Theorem 2.2. If α is a Pisot number, then limn→∞ ‖αn‖ = 0.

1Pisot’s preliminary results were independently proven in 1941 by Vijayaraghavan [Vij41], who was also interested in
studying this class of numbers. Some mathematicians therefore refer to these numbers as Pisot-Vijayaraghavan numbers, or
PV numbers, in recognition of the contributions of both mathematicians, as suggested by Salem in 1943. Unfortunately for
Vijayaraghavan, however, most of the literature regarding these numbers in refers to them simply as Pisot numbers.
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Figure 2.1: A plot of the roots of the polynomial f(x) = x4 − x3 − 1 in the complex plane, along with the
unit circle. Since only one root of the polynomial, approximately 1.38, lies outside the unit disc, this root is
a Pisot number.

Proof. Let α have Galois conjugates θ2, . . . , θd. Since |θi| < 1 for all i = 2, . . . , d, we have

lim
n→∞

θni = 0,

for all i = 2, . . . , d, and in particular,

lim
n→∞

(θn2 + θn3 + · · ·+ θnd ) = 0.

From the result of Theorem 2.1, we have for any n ≥ 0, there exists some integer bn such that

αn + θn2 + · · ·+ θnd = bn.

We now see that

bn − αn = θn2 + · · ·+ θnd

lim
n→∞

(bn − αn) = lim
n→∞

(θn2 + · · ·+ θnd )

= 0

Thus as n grows large, αn gets arbitrarily close to the integer bn, and correspondingly, we have that ‖αn‖
approaches 0, as desired.

At last, we see a systematic way of constructing almost integers. Given any Pisot number α, by taking
successively higher powers of α, we obtain values that get closer and closer to whole numbers. The time is
ripe for us to look at some examples of Pisot numbers, and the almost integers that they generate.

• For every integer n ≥ 2, we have n as the root of f(x) = x− n, and so every positive integer larger
than 1 is a Pisot number. The powers of integers, however, are exactly integers already, so these Pisot
numbers are not too useful in generating almost integers.

• The golden ratio φ = (1 +
√

5)/2 = 1.61803 . . . is the root of f(x) = x2 − x− 1, with Galois conjugate
−φ−1 = −0.61803 . . . having absolute value less than 1. Thus φ is a Pisot number.

• 1 +
√

2 = 2.41421 . . . is a Pisot number, with minimal polynomial f(x) = x2 − 2x − 1 and
1−
√

2 = −0.41421 . . . as its Galois conjugate.

• 1.46557 . . . is a cubic Pisot number, with minimal polynomial f(x) = x3 − x2 − 1 and
−0.23278 . . .± i0.79255 . . . as its Galois conjugates.
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Table 2.1: Some Pisot numbers and corresponding almost integers.

α 1.61803 . . . = 1+
√

5
2 2.41421 . . . = 1 +

√
2 1.46557 . . .

α2 2.6180. . . 5.8284. . . 2.1478. . .

α3 4.2360. . . 14.0710. . . 3.1478. . .

α4 6.8541. . . 33.97056. . . 4.6134. . .

α5 11.0901. . . 82.01219. . . 6.7613. . .

α10 122.99186. . . 6725.9998513. . . 45.7161. . .

α15 1364.000731. . . 551614.0000018128. . . 309.10353. . .

α20 15126.9999338. . . 45239073.99999997789. . . 2089.96315. . .

α25 167761.00000596. . . 3710155682.000000000269. . . 14131.01273. . .

Some of of the almost integers corresponding to powers of these Pisot numbers are listed in Table 2.1.

It is apparent that by taking higher powers of these Pisot numbers, we obtain irrational numbers that
get closer and closer to whole numbers. As can be deduced from Theorem 2.2, the rate at which these powers
approach whole numbers depends on the how large the absolute values of the Galois conjugates of the Pisot
numbers are. We can see that the powers of 1 +

√
2 approach integers rapidly, since its Galois conjugate has

a relatively small modulus of 0.414 . . .. On the other hand, the Galois conjugates of 1.46557 . . . both have
absolute value 0.82603 . . ., which is much closer to 1, resulting in fairly slow convergence to almost integers.

One of Pisot’s original and noteworthy results was that the Pisot numbers are the only algebraic
numbers that can generate almost integers this way. In particular, he was able to show that if α > 1 is an
algebraic number, then the existence of some nonzero, real λ such that

lim
n→∞

‖λαn‖ = 0

is sufficient to conclude that α is a Pisot number [Pis38]. It is unknown if this result remains true for
non-algebraic α, as no transcendental counterexamples have been found.

3 The Structure of S

In the previous section, we have shown that a clever method to construct almost integers is to find a Pisot
number and evaluate it at high powers. Only one detail was missing from our discussion; we have not
described a process for obtaining a non-trivial Pisot number to begin with, or mentioned anything on the
distribution of Pisot numbers. It turns out that the set of Pisot numbers, commonly referred to as S, has
been studied in great detail, and is very well understood. In this section, we will look at some properties of
the structure of this set.

The set S is countably infinite.

We saw earlier that every natural number larger than 1 is a Pisot number, and hence the set of Pisot
numbers must be infinite. On the other hand, S is a strict subset of the set of algebraic integers, which is
known to be countable, so S is also a countable set.
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The set S is closed.

Recall that a set is closed when it contains all of its limit points. The highly nontrivial fact that S is a
closed subset of R is due to a proof by Salem [Sal44],2 who clarified that the set of Pisot numbers is not
dense in R (for if S were dense, then every point in R would be either in S or a limit point of S).

The smallest element of S is known.

The set of Pisot numbers is unbounded from above, since every integer larger than 1 is an element of S.
However, it is bounded from below, since Pisot numbers are all strictly larger than 1. Since S is closed,
it must have a least element; Siegel [Sie44] proved that this smallest Pisot number is the positive root of
x3 − x− 1, which is approximately 1.32472.

The set S has infinitely many limit points.

It is known that the set of limit points of S has limit points of its own. In fact, more than that can be
said. Let us define the derived sets of S as a sequence of sets S(0), S(1), S(2), . . . such that S(0) = S, and for
n ≥ 1, S(n+1) is the set of limit points of S(n). Then it is known that S(n) is nonempty for any finite n.
The smallest element of S(2) is known to be 2; that is, 2 is a limit point of limit points of S [Ber80]. It was
determined by Bertin [Ber80], in fact, that n ∈ S(2n−2) for all n. A consequence of this is that there are a
huge amount of Pisot numbers clustered around the real line, particularly near the integers.

The subset S ∩ [1, 2] is completely understood.

Amara [Ama66] has given a complete characterization of the (infinitely many) limit points of the Pisot
numbers less than 2. Talmoudi [Tal78] gave the surprising result that for any of these limit points, there is
some small neighbourhood around the limit point such that all Pisot numbers in the neighbourhood can be
completely determined using highly structured sequences of polynomials.3

For example, the smallest limit point of the Pisot numbers is φ = (1+
√

5)/2, the root of f(x) = x2−x−1.
According to Talmoudi’s classification, any Pisot number sufficiently close to φ must be the root of the
a polynomial of the form f(x)xn + g(x), for some n ≥ 1 and g(x) ∈ {±1,±x,±(x2 − 1)}. Conversely,
any such polynomial will have a Pisot number as a root, for sufficiently large values of n (although the
polynomial may not be irreducible in general). Furthermore, as n grows arbitrarily large, the Pisot root
of this polynomial will approach the limit point φ. These special polynomials described by Amara and
Talmoudi give rise to what are called “regular Pisot numbers”; any Pisot number not fitting one of these
patterns is called “irregular”. The irregular Pisot numbers are much less common than the regular Pisot
numbers.

Pisot numbers can be found algorithmically.

Boyd [Boy78, Boy85, Boy84] has presented a remarkable algorithm that deterministically finds all Pisot
numbers within any interval [a, b] of the real line, and it is able to detect and compensate for any limit
points of S that may occur there. Boyd’s algorithm, which was developed over the course of three papers,
is particularly useful for finding the irregular Pisot numbers, and has marked a big achievement to further
the study of Pisot numbers and related areas. Due to this algorithm, along with the other facts known
about S, the set of Pisot numbers is very well understood, and Pisot numbers can be obtained very easily.

2Salem’s proof in 1944 that S is closed was a strong motivation to continue the study of Pisot numbers, and Pisot later
mentioned that he called the set S in order to honour Salem for this contribution.

3Although Amara and Talmoudi described their highly nontrivial classification of Pisot number sequences in French, the
main results have been summarized in various English papers, for example, by Hare [Har07] and Boyd [Boy96].
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4 Other Applications of Pisot Numbers

It turns out that Pisot numbers are useful for more than just generating almost integers. In fact, the Pisot
numbers have broad applications that arise in a variety of different areas of mathematics, making them a
rich class of objects to study. Some examples are as follows.

Salem numbers.

Closely related to the set of Pisot numbers is the set T of Salem numbers.4 A Salem number is an algebraic
integer whose Galois conjugates are all less than or equal to 1 in absolute value, but with at least one root
having an absolute value of exactly 1. Although the definition is very similar to that of Pisot numbers, the
set of Salem numbers is much less understood than S. It is known that T is not closed; a long standing
open conjecture is whether or not the set T has a least element. The currently known smallest element is
the root of a degree ten polynomial found by Lehmer [Leh33], but there is no proof that a smaller one does
not exist.5 Salem numbers exhibit a close relation with the Pisot numbers in that every Pisot number is a
limit point for a sequence of Salem numbers. However, whether these are the only limit points of T , like so
many other questions concerning Salem numbers, remains unknown [BP90, Boy77].

Mahler measure problems.

The Mahler measure of a polynomial is the product of all of the complex roots of the polynomial that
have absolute value larger than 1. The problem of finding polynomials of very small Mahler measure
has interested mathematicians for a long time, and continues to be an active area of study [Mos98]. In
particular, the Mahler measure of a minimal polynomial of a Pisot or Salem root α is always equal to α, so
in this case the problem reduces to finding small Pisot and Salem numbers. The smallest Pisot number is
known, as mentioned in Section 3; however, the smallest Salem number (if it exists) is not known, and the
study of Mahler measures has therefore motivated the search for the smallest element of T .

Beta expansions.

Rényi [Rén57] introduced the notion of beta expansions as a number representation system, where numbers
are written not using base 10, but base β where β may not necessarily be an integer. It was found that
surprising things happen when the base of representation is not a whole number; for example, expansions
are frequently not unique, and expansions of rational numbers may neither terminate nor repeat. In general,
the expansions are chaotic and unpredictable; however, when the base β is chosen to be a Pisot number,
then the expansions are much more well behaved. There has been a lot of study in identifying the patterns
that arise in these expansions when the base is chosen to be a Pisot number [Bas02, HT08, Pan11].

Fractal tilings, quasicrystals, and more.

Pisot numbers have many applications in dynamical systems, mainly due to the nonuniform distribution of
powers of Pisot numbers modulo one. The patterns in the beta expansions involving Pisot numbers can be
used to generate fractal tilings of the plane [AI01]. More recently, Pisot numbers have been used to study
the aperiodic tilings of quasicrystals [EF05].

4Although it was a nice gesture for Pisot to name his set of numbers S after Salem, this convention made notation
unnecessarily awkward when Salem introduced his own related class of numbers in 1945.

5To date, no Salem number smaller than 1.176. . . , the root of the polynomial x10 + x9 − x7 − x6 − x5 − x4 − x3 + x + 1, is
known. Despite extensive computer searches, the record still belongs to the polynomial Lehmer found using hand calculations
in 1933.
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5 Conclusions

The main goal of this paper was to outline a quick and easy method for producing non-integer values that
were unusually close to whole numbers. In doing so, we were able to get a glimpse at the structure and
properties of the set of Pisot numbers. Although these numbers are useful for generating large quantities
of almost integers, we have seen that their study is rich and interesting in its own right, and that the
applications of Pisot numbers in mathematics are broad.

There are many unanswered questions related to Pisot numbers, particularly ones involving the related
set of Salem numbers. There is also a lot of room for extended study in the applications and properties of
these numbers.
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(1966), 215–270 (1967). MR 0237459 (38 #5741)

[Bas02] Frédérique Bassino, Beta-expansions for cubic Pisot numbers, LATIN 2002: Theoretical informatics
(Cancun), Lecture Notes in Comput. Sci., vol. 2286, Springer, Berlin, 2002, pp. 141–152. MR
1966122 (2003m:11175)
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Abstract: Understanding the evolution of a many bodied system is still a very important problem
in modern physics. Fluid mechanics provides a mechanism to determine the macroscopic motion of
the system. These equations are additionally complicated when we consider a fluid moving in a curved
spacetime. The following paper discusses the derivation of the relativistic equations of motion, uses
numerical methods to provide solutions to these equations and describes how the curvature of spacetime
is modified by the fluid.

1 Introduction

Traditionally, a fluid is defined as a substance that does not support a shear stress. This definition is
somewhat lacking, but it does present the idea that fluids “flow” and distort. Any non-rigid multi-bodied
state can, under a suitable continuum hypothesis, be thus described as a fluid and will follow certain
equations of motion. Here, we define a relativistic fluid as classical fluid modified by the laws of special
relativity and/or curved spacetime (general relativity). The following paper attempts to provide a basic
introduction to these equations of motion of a relativistic fluid.

Fluid dynamics is an approximation of the motion of a many body system. A true description of
the evolution of a fluid would, in principle, need to account for the motion of each individual particle.
However, this description is impractical and of no substantial worth when modelling sufficiently large systems.
Therefore, provided that the desired level of accuracy is much lower than the continuum approximation,
it is acceptable to consider a system as a fluid. The applications of such an approximation to relativistic
fluids are varied and have been applied to the many different domains from plasma physics to astrophysics.

In this discussion, we begin with introducing the relevant equations found in Newtonian fluid mechanics.
We follow this with an introduction to the necessary mathematics to describe a four dimensional curved
spacetime. The stress-energy tensor of a perfect fluid is introduced and the equations of motion of a
relativistic fluid are derived. We briefly mention the modification of the stress-energy tensor in the presence
of viscosity. We finish off with a simple calculation of how the stress-energy of the fluid in question modifies
the curvature of space-time. The reader is assumed here to have a basic understanding of relativity along
with a low-level understanding of Newtonian fluid dynamics.

We note that for the remainder of this paper with will use units such that c = G = 1.

2 Introductory Mathematics

Classical fluids have, from a theoretical perspective, played a very important role in developing a great
deal of the mathematics of vector calculus of partial differential equations (pdes), and forms the core of
our understanding of problems in multi-body physics. Extension of this classical field to the domain of
relativity requires the use of the understanding of motion in a curved spacetime. An introduction to the
mathematics required for this development is provided here.
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2.1 Classical fluids

Determining solutions to the classical equations of motion of a fluid is still a very active area of research. If
we just consider a Newtonian fluid (water and air are both good examples of this type), the strain tensor
can be written as

eij =
1

2

(
∂ui
∂xj
− ∂uj
∂xi

)
,

where uj , xj are the jth components of the fluid velocity and coordinate vectors. For the remainder of this
paper, we will employed the Einstein summation convection xjxj =

∑
j x

jxj over the range of the indices.

In this domain, there are still four basic equations to satisfy

1. Continuity equation. This equation is derived through the hypothesis of conservation of mass. In its
typical form, it can be written down as

Dρ

Dt
+ ρ∇ · u = 0,

where D
Dt = ∂

∂t + uj
∂
∂xj called the material derivative, and ρ the density of the fluid.

2. Momentum equation. The fluid must also conserve momentum. We ensure this by requiring that

Duj
Dt

=
∂Tij
∂xj

− ρgj

Tij = −Pδij + 2µeij + λemmδij ,

where Tij is the stress tensor, P is the pressure , gj is the constant gravitational acceleration, δij is
the unity matrix, with µ and λ are fluid dependent scalars. If u is incompressible, (∇ · u = 0) these
equations reduce to the Navier-Stokes Equations.

3. Equation of state. This equation defines the relation between pressure (P ), temperature (T ), and
density (ρ). This equation can vary depending on the fluid in question. For an ideal gas it can be
written

P = ρRT

with constant R.

4. Temperature/Energy equation. This final equation is needed to deal with the thermodynamic effects
within the medium. If we consider the heat flux vector qi at any given point, we need to solve for
internal energy e

ρ
De

Dt
= − ∂qi

∂xi
− P

(
∂ui
∂xi

)
+ φ

with density (ρ), pressure (P), velocity (ui), and viscous dissipation (φ). This equation indicates that
the change in energy is due to convergence of heat, volume compression and viscous dissipation.

All this gives us a system of six, non-linear coupled pdes. These equations have been included to
help guide the reader in understanding how the following equations reduce in the Newtonian limit. It is
important to realize that these equations have still not been solved and currently represent one of the most
challenging problems in applied mathematics. For further details, Kundu [Kun90] has a well written text
on classical fluid mechanics.
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2.2 Curved spacetime

In order to understand relativistic fluids, if becomes important to develop the mathematical tools to look
at curves in a curved spacetime. While the reader is assumed to have a basic knowledge of differential
geometry, a brief outline of the some of the mathematics is presented here.

The length of an infinitesimally small line element in 4-space can be found by

ds2 = gµνdx
µdxν ,

where µ,ν run from {0, 1, 2, 3} or, equivalently, {t, x, y, z} in Cartesian spacetime. Note that this line
element is invariant of the chosen coordinate system, that is, it is a scalar. Here, the metric gµν
(of form - + + +) serves the role of a weighting function, used in defining the length of a path. In
a curved space the placement of the index is very important, and we use the metric gµν to raise and lower
the indices.

V µ = gµνVν or Vµ = gµνV
ν .

Consequently,

V µ = gµνgνρV
ρ → gµνgνρ = δµρ , (2.1)

where δµρ is the Kronecker delta.
The infinitesimal length of a curve ds2 divides up into three different regimes.

1. Timelike. If ds2 < 0, the curve is called timelike. Two events are timelike separate if there exists some
rest frame, in which both events occur at the same location at different times.

2. Null. If ds2 = 0, the curve is null. There does not exist a rest frame.

3. Spacelike. If ds2 > 0, the curve is spacelike. Two events are spacelike separated if there exists some
rest frame, in which both events occur at the same time at different locations.

It turns out that all matter travels along timelike curves and light moves along null paths. As such, it is
possible to define, for timelike curves, a proper time (τ) which is the time measured by an observer in a rest
frame.

dτ2 = −ds2. (2.2)

Using this definition, it is possible to define the 4-vector velocity

uµ =
dxµ

dτ
.

As a quick aside, the purpose of introducing this tensor calculus is to allow for a derivation of physical
laws, independent of a particular coordinate system. As such, a tensor will necessarily obey certain
transformation laws. We provide here the transformation relation for a vector, with higher order tensors
transforming in a consistent manner.

V̄µ =
∂xν

∂x̄µ
Vν or V̄ µ =

∂x̄µ

∂xν
V ν .

2.2.1 The covariant derivative and the material derivative

It is important to know how to find the derivative at a given point of a vector field. In a flat spacetime, the
rate of change of some vector field V ν in a particular direction xµ can be found simply by taking the partial
derivative. However, the derivative is not so easy to define in a curved spacetime. As an example, consider
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the vector V = V µeµ where eµ is some basis vector at a point. In a flat Cartesian coordinate system, the
basis vectors are constant, but in a curved spacetime, they are not. We see then that

∂µ (V νeν) = (∂µV
ν) eν (Flat Cartesian)

∂µ (V νeν) = (∂µV
ν) eν + V ν∂µeν . (Curved Space)

From this example it has been shown that there are two main issues to resolve when defining the
derivative in a curved space. First, how does one find a limit in a curved spacetime? And second, how do
we ensure that the derivative transforms correctly. It can be shown that both of these requirements can be
met by defining the covariant differential operator

∇µV ν = ∂µV
ν + ΓνµσV

σ

Γµνρ =
1

2
(∂ρgµν + ∂νgρµ − ∂µgνρ) , (2.3)

where commas denote partial derivatives. Here we see that the connection coefficient, Γ, “corrects” for the
curvature of the space. Similarly, for a rank-2 tensor, we can write

∇ρTµν = ∂ρT
µν + ΓµσρT

σν + ΓνσρT
µσ.

Before we continue, we quickly write down a few important identities which will be important later.
First, the material derivative can be written,

D

Dτ
V ν(xµ(τ)) =

∂xµ

∂τ
∇µV ν = V µ∇µV ν .

Secondly, it can also be shown that for timelike curves, by Equation 2.2, that

uµuµ = −1 ⇒ uµ∇νuµ = 0. (2.4)

This identity will prove invaluable when working through the details below. Finally, we note that for
Riemann manifold (considered here),

∇µgµν = 0 (2.5)

as a result of the definition of the connection coefficients.

2.2.2 Curvature and the Riemann tensor

We briefly present the ideas here simply for completeness and the details of the following calculations have
been omitted. This section is presented merely to remind the reader of where the Einstein field equations
have their origins. Anderson [AC07] has a good discussion of many these concepts.

The measure of the curvature of space is defined in terms Riemann tensor (Rµνρσ), Ricci tensor (Rµν),
and Ricci scalar (R).

Rµνρσ = Γµνσ,ρ − Γµνρ,σ + ΓµτρΓ
τ
νσ − ΓµτσΓτνρ (2.6)

Rµν = Rρµρν

R = Rρρ
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From the Bianchi identities

∇λRµνrhoσ +∇ρRµνσλ +∇σRµνλρ = 0,

it can be shown that

∇ν
[
Rµν − 1

2
Rgµν

]
= 0.

As such, we define the Einstein tensor

Gµν = Rµν −
1

2
Rgµν .

2.3 Einstein field equations

John Wheeler once said

“Mass tells space-time how to curve, and space-time tells mass how to move.”

The Einstein tensor is a measure of the curvature of spacetime. Mass is merely a form of energy and,
as such, we denote the stress-energy tensor, Tµν , containing all of the information of the energy of a system.
Thus, these two tensors must be in balance, which is represented in the Einstein field equations (efe)

Gµν =
8πG

c2
Tµν , (2.7)

where we include the constants c,G to present the efe in their usual form. Recall that we are using units
such that c = G = 1.

The efe represent a system of ten non-linear partial differential equations. The complexity of these
equations explains why few analytical solutions exist.

We’ve seen above that

∇νGµν = 0

applying this to Equation 2.7

∇µTµν = 0. (2.8)

This equation is very important in fluid dynamics, as we shall see. This equation encapsulates the idea of
energy and momentum conservation.

3 Governing Equations

One of the most difficult aspects of relativistic fluid dynamics is keeping track of “what-goes-where”, and
what index corresponds to what physical property. In Newtonian fluids, all of the equations clearly have their
own distinct physical interpretation, but when we extend these ideas to higher dimensions it is important
keep track of what physics we are referring too.

It may not appear clear, however, how Equation 2.8 relates to the standard Newtonian fluid dynamics
described above. The easiest way to compare these two is to first define projection operators, which will
allow us to understand this equation from a more intuitive front. Anile [Ani89] has a good description of
introductory relativistic fluid mechanics and the use of these projectors.



The Waterloo Mathematics Review 49

3.1 Projections

For any timelike curve pµ, we can project this into its timelike and spacelike components. To project it into
its pure timelike contribution, we contract pµ onto uµ. This projection captures what occurs in the rest
frame of an observer as he travels along with the fluid. This is sometimes associated with “Lagrangian”
coordinates.

Alternatively, sometimes it is valuable to project an equation into its purely spacelike components. We
do this by defining

hµν = gµν + uµuν or hµν = δµν + uµuν .

It is left to the reader to observe that the timelike projection uµ and the spacelike projection hµν are
orthogonal.

We then find that Equation 2.8 can be decomposed into an energy conservation component

uν∇µTµν = 0

and a momentum conservation component

hρν∇µTµν = 0.

3.2 Stress energy tensor

Different systems will have different stress energy tensors. Often, a lot of the problems of viscosity and
other effects can be neglected compared with pressure or other more dominant effects. We will consider
here the “perfect fluid” stress energy tensor which is the one typically introduced when approaching the
subject for the first time.

In the rest frame of the observer it can be written

Tµν =




e 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p



µν

,

or, in a more general frame,

Tµν = (e+ p)uµuν + pgµν , (3.1)

with gµν the metric, p pressure, e the total energy density.
Typically, we can write out that

e = ρ(1 + ε),

with ρ the rest frame mass energy density and ε internal energy density per unit mass.
The continuity equation can be written down as the following

∇µ (ρuµ) = 0,

which ensures conservation of mass.
A more general conservation energy equation of this system can then be derived by finding the timelike

component of Equation 2.8, projecting it onto uν :

uµ∇µe = − (e+ p)∇µuµ, (3.2)
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where we recall that ∇µgµν = 0, in the space we are considering here, and we have used the identities of
Equation 2.4.

Similarly, we can project Equation 2.8 into its spacelike component using hαµ:

(e+ p)uµ∇µuα = −hαµ∇µp, (3.3)

where, again, we have used the identities found in Equation 2.4

What we have shown here are the relativistic equivalent equations to the momentum and mass
conservations equations given in the Newtonian regime. In a relativistic case, it is the conservation of
energy, not mass, which concerns us. However, as we return to the Newtonian domain, other sources of
energy (kinetic, etc.) tend to be dominated by mass.

The equation of state and the conservation of temperature equations are not so easy to find. These
need to be derived statistically using thermodynamic principles for the fluid in question.

3.3 Relativistic Euler equations

Our goal is to write out a system of equations which can be used to solve for the flow of a fluid. At this
point we have a conservation of energy equation (Equation 3.2) and a conservation of momentum equation
(Equation 3.3). It is insightful to compare these equations with their classical counterparts in order to help
understand what these equations mean. We will do this by expanding Equation 3.3

(e+ p)uµ∇µuν = −∇νp− uνuµ∇µp,

from which we can write out the spatial components as

(e+ p)
Du

Dτ
= −∇p− u

Dp

Dτ
(Momentum equation)

uµ∇µe = − (e+ p)∇µuµ, (Continuity equation)

where D
Dτ = uµ∇µ. Now we see that if in the low velocity limit (ui � 1), with e� p, e ≈ ρ, and the fluid

is incompressible (∇ · u = 0) as is typical with water, we get back out typical Euler equations of Newtonian
fluids. (Incompressible, viscous free Navier-Stokes equations.)

ρ
Du

Dt
= −∇p

Dρ

Dt
= 0.

For a more detailed look at Newtonian fluids, see Kundu [Kun90].

We stop here and see that we have extended the Newtonian fluid equations into their relativistic form.
Of course we are missing three very important items from this derivation. We have left out all viscosity
terms, temperature evolution, and we still have not yet written down an equation of state. These are three
fundamental properties which we have ignored here. The reason for this is simple; these additions are very
complicated. We shall discuss these further in this article, however, they have been omitted here in order to
aid the reader in understanding the current physical content.

We should also note here that we have assumed a known metric for our purposes. This is often
acceptable for certain application; however, a more general relativistic treatment is required when the fluid
itself causes space-time to curve.
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3.4 Viscosity

Before continuing, we note that the we have omitted from the equations of motion viscosity. The addition
of viscosity to a relativistic fluid will amount to an addition of non-diagonal terms to the stress energy
tensor. These terms drastically increase the complexity of the equations. Viscosity plays an important role
in the dispersion of energy of a system and are indispensable in the study of turbulence.

We present here the modification of the stress-energy tensor as a result of viscosity. We compare these
terms to their classical counterpart. Landau [LL59] has a brief discussion on the topic (Alternatively, see
the book by Wilson and Mathews [WM03]).

Tµν = pgµν + (e+ p)uµuν + τµν

τµν = −η
([
∇µuν +∇νuµ︸ ︷︷ ︸

]
+ uµu

α∇αuν + uνu
α∇αuµ

)
− (ζ − 2

3
η)

[
∇αuα︸ ︷︷ ︸

]
(gµν + uµuν)

Here we emphasize the relation to the Newtonian case. η and ζ are coefficients of viscosity.

4 Steady State Solution

The simplest relativistic fluid derivation is the hydrostatic problem. In the case, we can assume that the
fluid is at rest and we write out that

u0 =
√−g00 ui = 0,

which is simply stating that the fluid has no velocity in 3-space.
Looking back to the momentum equation (Equation 3.3) and Equation 2.3, we find that

−(e+ p)Γ0
ν0u0u

0 = −∇νp
1

e+ p
∇νp = −1

2
∂ν ln

√−g00, (4.1)

where, the metric allows g00 = 1
g00

.

As Landau points out [LL59], in the weak field limit where (e+ p) ≈ ρ and g00 = −1− 2φ with

ln(1 + 2φ) ≈ 2φ

Equation 4.1 reduces to

1

ρ
∇P = −∇φ

∇P = ρg,

which is the classical condition of hydrostatics.

4.1 Numerical energy transport

We can now write out the equations that must be obeyed by the relativistic fluid. For the purposes of this
paper, we will reduce down the equations under certain assumptions.

1. One-dimensional fluid flow

2. Flat Minkowski space

3. The fluid is barotropic (i.e. P = C e, where C is a constant)
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4. Energy density (e) is conserved within the medium.

As the energy density is constant we can write out the following system of equations

∇µuµe = 0

(e+ p)uµ∇µuν + uνu
µ∇µp = −∇νp

p = Ce,

which, under the barotropic fluid assumption, reduce further to

∇µ(uµe) = 0 (4.2)

uµ∇µuν =
−C

(1 + C)e
∇νe. (4.3)

From the Lorentz transforms, it can be shown that

t = γτ where γ =
(
1− v2

)−1
2 .

Under this transformation, we find that

uµ =
dxµ

dτ
=
dxµ

dt

dt

dτ
= γvµ.

Along with assumptions the remaining, Equations 4.2 and 4.3, become

∂t(γe) + ∂x(γev) = 0

γ∂t(γv) + ∂x

(
(γv)2

2

)
= − C

1 + C
∂x ln e.

Using a spectral fourth order Runge-Kutta differencing scheme, we can attempt to solve these equations.
The details of the method can be found in Duran’s numerical methods text [Dur99]. The details have
been omitted here to avoid confusion. Appendix A contains the code used to approximate the system of
equations along with a brief description of the method.

In order to demonstrate the solution to this equation, we will use periodic boundary conditions. We will
assume that all quantities are unit-less and we will implement initial conditions to represent a relativistic
fluid with the energy density grouped into a dense region. A hyperbolic secant function was selected for
the energy density function as it represents a single energy density packet centred around the origin. A
relativistic velocity of 0.5c was selected, and a background energy of one was used to ensure a non-zero
energy level throughout the domain.

u(x, 0) = 0.5

e(x, 0) = sech
( x

0.5

)
+ 1

A time step of ∆t = 1e − 5 and 512 grid points were used. Figure 4.1 outputs the results of the
computation for three different values of C = {0, 1

3 ,
2
3} corresponding to non-interacting matter, relativistic

matter, and cold matter respectively. For details on these values, Battaner [Bat96] has a description of the
statistical mechanical derivation.

The purpose to providing this numerical solution if three-fold. First, it demonstrates the complexity
of the corresponding solution. It can be clearly seen that the interaction between the velocity and the
energy density is very complicated. For C=0, there is no effect of the energy density on the velocity, and
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Figure 4.1: Energy transport relativistic hydrodynamics for values of P =
{0e (solid line), 1

3e (dashed line), 2
3e (dash-dot line)} at time steps t={0, 1, 2} where both the energy

density (e) and 3-velocity (v) have been output.

vice-verse. For C > 0, the change of one feeds back onto the other causing the solutions to distinguish
themselves. Second, this serves as a basis upon which future work can be preformed. Thirdly, these numerics
demonstrate the fact that, even under the simplifying assumptions of Minkowski space, the solution to the
problem highly dependent upon the relativistic components of the equation. In this case, we see that the
higher proportion of P to the energy density (i.e. larger values of C), the more rapid the transition from
one state to another.

5 Spacetime Curvature

Up to this point we have assumed that the metric was known, that is the fluid does not substantially change
the curvature of spacetime. This has many applications, however, it does leave something desired in order
to get a more general theory. We return to the Einstein field equations

Gµν = 8πGTµν

Rµν −
1

2
gµνR = 8πGTµν .

It is often convenient to convert this into the form

Rµν = 8πG

(
Tµν −

1

2
gµνT

α
α

)
. (5.1)

These ten differential equations prove very difficult to solve. We can however, show that under certain
symmetries, the system reduces to a simplified form.

For the purposes of this paper, we consider an application to a star. In reference to this, we will assume
that the metric should be spherically symmetric. For the present purpose, let us also assume that the metric
is constant in time. In reference to this, it can be shown that the most generic metric that can be written
in spherical coordinates is
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gµν = diag
[
−B(r), A(r), r2, r2 sin2 θ

]
µν
, (5.2)

for which we can easily calculate the connection coefficients.
The components of the Ricci tensor can be found using Equation 2.6. They are

R00 = − 1

2A

d2B

dr2
+

1

4A

dB

dr

(
1

A

dA

dr
+

1

B

dB

dr

)
− 1

r

1

A

dB

dr

Rrr =
1

2B

d2B

dr2
− 1

4B

dB

dr

(
1

A

dA

dr
+

1

B

dB

dr

)
− 1

r

1

A

dA

dr

Rθθ = −1 +
r

2A

(
− 1

A

dA

dr
+

1

B

dB

dr

)
+

1

A

Rφφ = sin2 θRθθ

else = 0. (5.3)

For a more detailed explanation, see Battaner [Bat96].

5.1 Schwarzschild metric

The previous assumptions prove reasonable when considering a star in space. In the region external to the
star (provided the star is not rotating or charged) the stress energy tensor becomes null, and thus we must
solve the complete set of equations

Rµµ = 0.

The original solution to this problem was originally proposed by Schwarzschild in  (the original
article has recently been republished [Sch99]). Schwarzschild showed that the metric

gµν = diag

[
−
(

1− 2M

r

)
,

(
1− 2M

r

)−1

, r2, r2 sin2 θ

]

µν

is a solution.

5.2 Curvature Deformation

Inside the star, however, is a very different story. We will assume here that we still have spherical symmetry
and the star is not rotating or charged. Many of the following details can be found in Battaner [Bat96]. We
find that the basic form of the metric is the same as in (5.2), as such the Ricci tensor will in turn, have the
same basic structure as Equation 5.3. However, now the field equations become

Rµν = 8π

(
Tµν −

1

2
gµνT

α
α

)
.

Recall that for a perfect fluid (Equation 3.1), we can write the stress energy tensor as

Tµν = (e+ p)uµuν + pgµν .

In the rest frame of the fluid we can write that

uj = (−
√
B, 0, 0, 0).
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Thus, the solution stress energy tensor becomes

Tµν = diag
[
eB, pA, pr2, pr2 sin2 θ

]
. (5.4)

We can then use the metric on Equation 5.4 to find

Tαα = 3p− e. (5.5)

Thus, Equations 5.4 and 5.5 combined with Equation 5.1 give, (Recall that we use units such that
G=1),

Rµν
8π

= diag

[
1

2
(3p+ e)B,−A

2
(p− e),−r

2

2
(p− e),−r

2 sin2 θ

2
(p− e)

]
, (5.6)

which, equated with Equation 5.3, provides a complete system of equations to solve for the components
of the metric.

− 1

2A

d2B

dr2
+

1

4A

dB

dr

(
1

A

dA

dr
+

1

B

dB

dr

)
− 1

r

1

A

dB

dr
= −4π(3p+ e)B (5.7)

1

2B

d2B

dr2
− 1

4B

dB

dr

(
1

A

dA

dr
+

1

B

dB

dr

)
− 1

r

1

A

dA

dr
= 4πA(p− e) (5.8)

−1 +
r

2A

(
− 1

A

dA

dr
+

1

B

dB

dr

)
+

1

A
= 4πr2(p− e) (5.9)

Rφφ = sin2 θRθθ. (5.10)

Combining Equations 5.7 and 5.8 gives

−1

r

(
dB

dr
+
B

A

dA

dr

)
= −8πAB(e+ p), (5.11)

using Equation 5.9,

d

dr

( r
A

)
= 1− 8πr2e. (5.12)

Recall that here e is the energy density of the fluid, containing mass and internal energy, so we can write
out that

U =

∫ r

0

4πr2edr

r

A
= r − 2U

A =

(
1− 2U

r

)−1

.

Keep in mind that we have two boundary conditions on A. At r = 0, we want to make sure the A is finite,

and for r > R, the radius of the star, we require A to become the Schwarzschild value, AR =
(
1− 2M

R

)−1
.

Similarly, Equations 5.11 and 5.9 provide an equation for B

1

B

dB

dr
=

2A

r2

(
U + 4πr3p

)
. (5.13)
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Figure 5.1: Solution to the A and B metric elements, assuming units such that the radius of the star is
R = 1, and the mass is given as M = 1/π.

Here we can find a boundary condition such that, on the surface of the star, p = 0, U = M , thus, (where
BA =1)

dB

dr
=

2M

R2
, (5.14)

where again R is the radius of the star.
This calculation is meant to demonstrate how the stress-energy tensor modifies the curvature of

space-time. In the domain without the nice symmetric properties we’ve introduced here, it is often necessary
to solve the equations numerically. We refer the reader to further texts on the subject, such as the book
written by Wilson [WM03]. These computations themselves prove very difficult and are omitted here.

5.3 Graphical solution

In order to understand the metric internal to the star, we consider the graph of A and B as a function of
distance from the origin. For simplicity we assume that the density of the star is constant, and assume units
such that the radius is 1 and mass is 1/π. This is meant to provide a qualitative solution to the metric
inside of a star. Figure 5.1 plots the resulting values of A and B under these conditions.

Notice that the solution is piecewise continuous at surface of the star (r = 1). Notice also that the A
parameter becomes close to 1 near the centre, its asymptotic limit.

6 Conclusion

The current paper is meant to provide a brief introduction to relativistic fluids. As much as possible, this
work has tried to compare the relativistic results with their Newtonian counterparts in order to provide
basis for the new material. In here, the equations of motion of a perfect fluid have been written out and the
static solution has been provided.

One major extension of relativistic hydrodynamics which we has not tackled here is Magnetohydrody-
namics (mhd). mhd is the study of electrically charged fluids and has been applied to a wide variety of
topics including stellar modelling. Golub [GP10] has a good classical approach to the topic. This is still a
very active area of research.

For a more in depth discussion of relativistic hydrodynamics, the reader is referred to two well written
texts on the subject. Andersson’s discussion [AC07] provides a much more rigorous approach to the
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subject, and spends a great deal of time developing the mathematics of differential geometry. Also, Anile’s
book [Ani89] extends much of the above work to the case of mhd. There are many other well written texts
on the subject, we simply provide the reader with two examples to serve as a basis for further research.
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A Numerical Hydrodynamics Methodology

This section discusses the code used to compute the solution to the relativistic fluid equations found in
Section 4.1. The source code is available along side the online version of this article.

Putting the equation into the following form

∂tu = F (u),

this spectral method decomposes the function uj , sampled at the grid points xj , into its truncated Fourier
series

uj =

N−1
2∑

k=− (N+1)
2

ak exp ikxj ,

with N the number of grid points. Note that we have removed the k = N/2 wavenumber.

This technique allows us to use Matlab’s built in fft methods to compute derivatives of the corre-
sponding function. Once the method for computing F has been established, we can then implement a
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Fourth-Order Runge-Kutta method using

q1 = ∆tF (un)

q2 = ∆tF (un +
q1

2
)

q3 = ∆tF (un +
q2

2
)

q4 = ∆tF (un + q3)

un+1 = un +
q1 + 2q2 + 2q3 + q4

6
,

where the superscripts, n, refer to the time step. The details of such a computation are included in
Durran [Dur99].
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