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Abstract: The problem of determining the eigenvalues and eigenvectors for linear operators acting on
finite dimensional vector spaces is a problem known to every student of linear algebra. This problem has
a wide range of applications and is one of the main tools for dealing with such linear operators. Some of
the results concerning these eigenvalues and eigenvectors can be extended to infinite dimensional vector
spaces. In this article we will consider the eigenvalue problem for the Laplace operator acting on the L2

space of functions on a bounded domain in Rn. We prove that the eigenfunctions form an orthonormal
basis for this space of functions and that the eigenvalues of these functions grow without bound.

1 Notation

In order to avoid confusion we begin by making explicit some notation that we will frequently use.

For a bounded domain Ω ⊂ Rn we let L2(Ω) be the usual real Hilbert space of real valued square

integrable functions Ω, with inner product 〈u, v〉2 :=
∫

Ω
uv dx and norm ‖u‖2 :=

(∫
Ω
u2 dx

)1/2
. We will also

encounter the Sobolev space, denoted H1,2
0 (Ω), which is a similar space of real valued function with inner

product and norm given instead by

〈u, v〉1,2 =

∫

Ω

(∇u · ∇v + uv) dx

‖u‖1,2 =

(∫

Ω

(
|∇u|2 + u2

)
dx

)1/2

.

Since this space is somewhat less common than L2(Ω), the appendix reviews some elementary properties
and theorems concerning this space which are useful in our analysis.

Our problem of interest in this article concerns the Laplace operator. This is a differential operator
denoted by ∆ and is given by

∆u =
n∑

i=1

∂2u

∂x2
i

,

where u is a sufficiently smooth real valued function, u : Ω→ R and x1, x2, . . . xn are the coordinates
for Ω ⊂ Rn.
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2 The Eigenvalue Problem

2.1 The eigenvalue equation

We consider the eigenvalue problem for the Laplacian on a bounded domain Ω. Namely, we look for pairs
(λ, u) consisting of a real number λ called an eigenvalue of the Laplacian and a function u ∈ C2(Ω) called
an eigenfunction so that the following condition is satisfied

{
∆u+ λu = 0 in Ω
u = 0 on ∂Ω.

(2.1)

Such eigenvalue/eigenfunction pairs have some very nice properties, some of which we will explore here.
One fact of particular interest is that they form an orthonormal basis for L2(Ω). This is an important and
useful result to which we will work towards in this article.

Firstly, we will focus our attention to a weaker version of Equation 2.1. That is, we will examine a
condition that is a necessary, but not sufficient, consequence of Equation 2.1. In particular, we will look for
solutions u in the Sobolev space H1,2

0 (Ω) that obey the following equation for all test functions v ∈ H1,2
0 (Ω):

∫

Ω

∇u · ∇v dx = λ

∫

Ω

uv dx. (2.2)

The following proposition shows that this condition is indeed weaker than Equation 2.1.

Proposition 2.1. If u ∈ C2(Ω) satisfies Equation 2.1 then Equation 2.2 is satisfied too.

Proof. Suppose u is a twice differentiable function u ∈ C2(Ω) that satisfies Equation 2.1. Given any
v ∈ H1,2

0 (Ω), by definition of H1,2
0 (Ω) (see Appendix A), there is a sequence vk ∈ C1

0 (Ω) so that vk → v in
the H1,2

0 norm. We have that for any vk

∫

Ω

(∆u+ λu)vk dx = 0 (2.3)

∫

Ω

(∆u)vk dx = −λ
∫

Ω

uvk dx

−
∫

Ω

∇u · ∇vk dx = −λ
∫

Ω

uvk dx,

where the last swap of derivatives is justified by the divergence theorem applied to the vector field vk∇u
and utilizing the fact that vk ∈ C1

0 (Ω) is compactly supported and so vk vanishes on the boundary
∂Ω. By definition of the norm on H1,2

0 (Ω) we have that for any f ∈ H1,2
0 (Ω) that ‖f‖2 ≤ ‖f‖1,2 and

‖∇f‖2 ≤ ‖∇f‖1,2 which means that since vk → v in H1,2
0 (Ω) we automatically have that vk → v and

∇vk → ∇v in L2(Ω). In particular, 〈u, vk〉2 → 〈u, v〉2 and 〈∇u,∇vk〉2 → 〈∇u,∇v〉2. Taking the limit as
k →∞ of the equality in Equation 2.3 and using these limits gives us precisely Equation 2.2 as desired.

Remark 2.2: Even more interesting perhaps is that the converse also holds. The weak functions u ∈ H1,2
0 (Ω)

that satisfy Equation 2.2 can be shown, via some regularity results, to be smooth functions in C∞(Ω) and
will also solve the original eigenvalue problem [McO03]. The proof of these regularity results is technical and
would lead us too far from the eigenvalue problem which we investigate here, so we will content ourselves to
simply proving results about the eigenfunctions that solve the weak equation, Equation 2.2, in this article.

The advantage of passing from the usual eigenvalue problem, Equation 2.1, to this weak equation is
that we have moved from smooth functions to the Sobolev space H1,2

0 (Ω). In this restricted space, we can
utilize certain results that would not hold in general and will be crucial to our analysis. The main tool we
gain in this space is the Rellich compactness theorem, which allows us to find convergent subsequences
of bounded sequences in H1,2

0 (Ω). Without this powerful tool, it would be impossible to prove the results
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which we strive for. For this reason, we will use Equation 2.2 as our defining equation rather than Equation
2.1. From now on when we refer to “eigenfunctions” or “eigenvalues” we mean solutions in H1,2

0 (Ω) of
Equation 2.2 (rather than solutions of Equation 2.1). We will also refer to Equation 2.2 as “the eigenvalue
equation” to remind ourselves of its importance.

Lemma 2.1. If u1 and u2 are eigenfunctions with eigenvalues λ1 and λ2 respectively and if λ1 6= λ2 then
〈u1, u2〉2 = 0 and moreover 〈∇u1,∇u2〉2 = 0

Proof. Since u1 and u2 are both eigenfunctions, they satisfy the eigenvalue equation by definition. Plugging
in v = u2 into the eigenvalue equation for u1 and v = u1 into the eigenvalue equation for u2 gives

∫

Ω

∇u1 · ∇u2 dx = λ1

∫

Ω

u1u2 dx

∫

Ω

∇u2 · ∇u1 dx = λ2

∫

Ω

u2u1 dx.

Subtracting the second equations from the first gives

(λ1 − λ2)

∫

Ω

u2u1 dx = 0,

so the condition λ1 6= λ2 allows us to cancel out λ1 − λ2 to conclude
∫

Ω
u2u1 = 〈u1, u2〉2 = 0 as desired.

Finally, notice that 〈∇u1,∇u2〉 =
∫

Ω
∇u1 · ∇u2 dx = λ1

∫
Ω
u1u2 dx = 0 too.

2.2 Constrained optimization and the Rayleigh quotient

Consider now the functionals from H1,2
0 (Ω)→ R

F (u) =

∫

Ω

|∇u|2 dx = ‖∇u‖22

G(u) =

∫

Ω

u2 dx− 1 = ‖u‖22 − 1.

These functionals have an intimate relationship with the eigenvalue problem. The following results
makes this precise.

Lemma 2.2. If u ∈ H1,2
0 (Ω) is a local extremum of the functional F subject to the condition G(u) = 0, then

u is an eigenfunction with eigenvalue λ = F (u).

Proof. The proof of this relies on the Lagrange multiplier theorem in the calculus of variations setting (this
result is exactly analogous to the usual Lagrange multiplier theorem on Rn with the first variation playing
the role of the gradient). The Lagrange multiplier theorem states that if F and G are C1-functionals on
a Banach space X, and if x ∈ X is a local extremum for the functional F subject to the condition that
G(x) = 0 then either δG(x)y = 0 for all y ∈ X or there exists some λ ∈ R so that δF (x)y = λδG(x)y for all
y ∈ X. (Here δF (u)v denotes the first variation of the functional F at the point u and in the direction of v.)

We use this theorem with the space H1,2
0 (Ω) serving the role of our Banach space, and F,G as defined

above playing the role of the functionals under consideration. The first variation of F and G are easily
computed
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δF (u)v = lim
ε→0

1

ε
(F (u+ εv)− F (u))

= lim
ε→0

1

ε

(∫

Ω

|∇u+ ε∇v|2 dx−
∫

Ω

|∇u|2 dx
)

= lim
ε→0

1

ε

(∫

Ω

|∇u|2 + 2ε∇u · ∇v + ε2|∇v|2 − |∇u|2 dx
)

= lim
ε→0

(∫

Ω

2∇u · ∇v + ε|∇v|2 dx
)

= 2

∫

Ω

∇u · ∇v dx = 2 〈∇u,∇v〉2 .

A similar calculation yields

δG(u)v = 2

∫

Ω

uv dx = 2 〈u, v〉2 .

Notice that δG(u)u = 2 〈u, u〉2 = 2‖u‖2 = 2 by the constraint G(u) = 0. This means that δG(u)v is

not identically zero for all v ∈ H1,2
0 (Ω). Hence, since u is given to be a local extremum of F subject to

G(u) = 0 and δG(u) is not identically zero, the Lagrange multiplier theorem tells us that there exists a λ so
that for all v ∈ H1,2

0 (Ω) we have

δF (u)v = λδG(u)v

2 〈∇u,∇v〉2 = 2λ 〈u, v〉2 .
Cancelling out the constant of 2 from both sides leaves us with exactly the eigenvalue equation! Hence

u is an eigenfunction of eigenvalue λ as desired. Moreover, we can calculate λ directly using the fact that
the above holds for all v ∈ H1,2

0 (Ω):

F (u) = 〈∇u,∇u〉2
= λ 〈u, u〉2
= λ,

where we have used 〈u, u〉2 = G(u) + 1 = 1 since G(u) = 0 is given.

Theorem 2.3. There exists some u ∈ H1,2
0 (Ω) so that u is a global minimum for F subject to the constraint

G(u) = 0.

Proof. Let us denote by C the constraint set we are working on, namely C = {u ∈ H1,2
0 (Ω) : G(u) = 0}. Notice

that G(u) = 0 precisely when ‖u‖2 = 1 so C is the set of unit norm functions. Let I = inf{F (u) : u ∈ C} be
the infimum of F taken over this constraint set. We will prove that this infimum is actually achieved at some
point u ∈ C. By the definition of an infimum, we can find a sequence {uj}∞j=1 ⊂ C so that F (uj) ≤ I + 1

j .

In particular then, limj→∞ F (uj) = I and we also have that F (uj) = ‖∇uj‖22 ≤ I + 1 for all j ∈ N. By the
Poincaré inequality (Theorem A.1) we have then that ‖uj‖2 ≤ C‖∇uj‖2 ≤ C(I + 1) for some constant C.
Adding these inequalities together we see that

‖uj‖21,2 =

∫

Ω

|∇uj |2 + u2
j dx

= ‖∇uj‖22 + ‖uj‖22
≤ (I + 1)2 + C2(I + 1)2

<∞.
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In particular, this shows that uj is a bounded sequence in H1,2
0 (Ω). Calling upon the Rellich compactness

theorem (Theorem A.2), we know that we can find a subsequence {ujk}∞k=1 of {uj}∞j=1 that converges in the

L2 sense to some element u ∈ {uj}∞j=1 ⊂ L2(Ω). Moreover, since H1,2
0 (Ω) is a Hilbert space, every bounded

sequence contains a weak-convergent subsequence that converges in the weak topology on H1,2
0 (Ω). (It is a

fact from the theory of functional analysis that the existence of such weak-convergent subsequences in a
Banach space is equivalent to that Banach space being reflexive. As Hilbert spaces are self-dual by the
Riesz representation theorem, they are certainly reflexive and hence we can always find such subsequences.)
Hence, we may find a subsequence of {ujk}∞k=1 that converges in the weak topology of H1,2

0 (Ω) to some

u′ ∈ H1,2
0 (Ω) (for notational ease, we will continue to denote this subsequence by {ujk}∞k=1). Of course, this

subsequence still converges to u in L2(Ω). Since ujk → u in L2(Ω), it follows that u = u′ i.e. we have that

ujk → u in the weak topology on H1,2
0 (Ω). This allows us to prove the following claim.

Claim. ‖u‖1,2 ≤ lim inf
k→∞

‖ujk‖1,2

Proof of claim. Since ujk → u in the weak topology on H1,2
0 (Ω), we have

‖u‖21,2 = 〈u, u〉1,2
= lim
k→∞

〈u, ujk〉1,2
= lim inf

k→∞
〈u, ujk〉1,2

≤ lim inf
k→∞

‖u‖1,2‖ujk‖1,2
= ‖u‖1,2 lim inf

k→∞
‖ujk‖1,2.

Cancelling out ‖u‖1,2 from both sides yields the desired result.

Using the above inequality and the fact that ‖u‖2 = limk→∞ ‖ujk‖2 = 1 since ujk → u in L2(Ω), we
can compute

F (u) =

∫

Ω

|∇u|2 dx

=

∫

Ω

(
|∇u|2 + u2

)
dx−

∫

Ω

u2 dx

= ‖u‖21,2 − ‖u‖22
≤ lim inf

k→∞
‖ujk‖21,2 − lim ‖ujk‖22

= lim inf
k→∞

(
‖ujk‖21,2 − ‖ujk‖22

)

= lim inf
k→∞

(∫

Ω

(
|∇ujk |2 + ujk

2
)
dx−

∫

Ω

ujk
2 dx

)

= lim inf
k→∞

(∫

Ω

|∇ujk |2 dx
)

= lim inf
k→∞

F (ujk)

≤ lim inf
k→∞

(
I +

1

jk

)

≤ I,

but now, since ‖u‖2 = 1, we have u ∈ C so we have F (u) ≥ I = inf{F (u) : u ∈ (C)}. Hence, combining the
inequalities, we see that F (u) = I achieves the minimum for F restricted to C as desired.
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Remark 2.4: Theorem 2.3 shows that u is a global minimum of F subject to G(u) = 0. In particular then, it
is a local extremum for F subject to G(u) = 0 so applying the result of Lemma 2.2 informs us that u is an
eigenfunction with eigenvalue λ = F (u). Since this is the smallest possible value of F subject to G(u) = 0,
this is the smallest possible eigenvalue one could obtain. For this reason we shall call this eigenvalue λ1 and
the associated eigenfunction u1.

Remark 2.5: By the definition of F , we notice that for any u ∈ H1,2
0 (Ω) and any scalar c ∈ R, we have

F (cu) = c2F (u). This almost-linearity for scalars means that we can remove the condition G(u) = 0 from
consideration in some sense by normalizing F by ‖u‖2. Notice that

F (u)

‖u‖22
=

∫
Ω
|∇u|2 dx
‖u‖22

=

∫

Ω

∣∣∣∣
∇u
‖u‖

∣∣∣∣
2

dx

= F

(
u

‖u‖

)
.

Hence, minimizing F (u) subject to ‖u‖ = 1 is the same as minimizing the quotient
∫
Ω
|∇u|2 dx∫
Ω
u2 dx

with u

running in all of H1,2
0 (Ω). This quotient is known as the Rayleigh quotient. This gives us a more notationally

concise way to write down our smallest eigenvalue

λ1 = inf
u∈H1,2

0 (Ω)

∫
Ω
|∇u|2 dx∫
Ω
u2 dx

.

2.3 The sequence of eigenvalues

To find the next eigenvalue, we can do something very similar. We first notice that the second smallest
eigenvalue will have an eigenfunction that is orthogonal to u1 by the result of Lemma 1, so we can restrict
the search for this eigenfunction to the subspace X1 = span{u1}⊥ = {u ∈ H1,2

0 (Ω) : 〈u, u1〉2 = 0}. Since

this is the null space of the continuous operator 〈·, u1〉2, this is a closed subspace of H1,2
0 (Ω) and hence can

be thought of as a Hilbert space in its own right. By modifying the proof of Lemma 2 slightly by using X1

as our Banach space rather than all of H1,2
0 (Ω), we see that any u ∈ X1 that is a local extrema for F subject

to G(u) = 0 will be an eigenfunction of eigenvalue λ = F (u). By modifying the argument of Theorem 1
slightly by changing the restriction set C to be C = {u ∈ X1 : G(u) = 0, the identical argument shows that
there is some u ∈ C that achieves the minimum for F on this restricted set. This will be an extremum for
F on X1 subject to the restriction G(u) = 0, so by modified Lemma 2 this will be an eigenfunction, call it
u2. By arguments similar to the above, we find the associated eigenvalue λ2 is

λ2 = min{F (u) : u ∈ C ⊂ X1}

= inf
u∈X1

∫
Ω
|∇u|2 dx∫
Ω
u2 dx

.

Since X1 ⊂ H1,2
0 (Ω), the Rayleigh quotient definition above tells us immediately that λ1 ≤ λ2.

Repeating this same idea inductively, we can define Xn = span{u1, u2, . . . , un}⊥ = {u ∈ H1,2
0 (Ω) :

〈u, ui〉2 = 0∀i ∈ 1, . . . , n} and by appropriately modifying Lemma 2.2 and Theorem 2.3 we will be able to
justify the fact that the nth eigenvalue can be found by

λn = inf
u∈Xn

∫
Ω
|∇u|2 dx∫
Ω
u2 dx

.
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Moreover, we can always find a normalized eigenfunction un that achieves this lower bound. Since
H1,2

0 (Ω) ⊃ X1 ⊃ X2 . . ., we can see that this generates a sequence of eigenvalues 0 ≤ λ1 ≤ λ2 ≤ λ3 . . .
and eigenfunction u1, u2, u3, . . . which are generated in such a way that they are all mutually orthogonal
with respect to the L2(Ω) inner product (our construction via the Rayleigh quotient restricted to Xn

automatically orthogonalizes the eigenspaces of the degenerate eigenvalues). Moreover, these eigenfunctions
have been normalized so that ‖un‖2 = 1 and also, by invoking the result of Lemma 2.1, we have then that
‖∇un‖2 = λn‖un‖2 = λn. The following theorem shows that these eigenvalues tend to infinity.

Theorem 2.6. lim
n→∞

λn =∞

Proof. This is another result that follows with the help of the Rellich compactness theorem. Since the
sequence λi is non-decreasing, the only way that they could not tend to infinity is if they are bounded above.
Suppose by contradiction that there is some constant M so that λn < M for all n ∈ N. Notice then that

‖∇un‖22 =

∫

Ω

∇un · ∇un dx

= λn

∫

Ω

u2
n dx

= λn

≤M,

where we have used the eigenvalue equation with v = un and the fact that ‖un‖2 = 1. Notice now that the
sequence of eigenfunctions is bounded in H1,2

0 (Ω) since

‖un‖21,2 =

∫

Ω

|∇un|2 + u2
n dx

= ‖∇un‖22 + ‖un‖22
≤M + 1.

By the Rellich compactness theorem, we can find a convergent subsequence unk
converging to some

element of L2(Ω). This subsequence, being convergent, is an L2-Cauchy sequence, meaning in particular
that ‖unk

− unk+1
‖22 → 0 as n→∞. But orthonormality of un prohibits this as we have

‖unk
− unk+1

‖22 = ‖unk
‖22 − 2

〈
unk

, unk+1

〉
+ ‖unk+1

‖22
= 1− 0 + 1

> 0.

This contradiction shows that our original assumption that the eigenvalues are bounded above by
some M is impossible. Since the eigenvalues are nondecreasing, this is enough to show limn→∞ λn =∞, as
desired.

2.4 Orthonormal basis

Finally, we have the machinery to prove that the eigenfunctions are not only an orthonormal set in L2(Ω),
but they are are a maximal orthonormal set: an orthonormal basis for L2(Ω).

Theorem 2.7. For any f ∈ L2(Ω), we can write f =
∞∑

n=1

αnun where αn = 〈f, un〉2, where this infinite sum

converges to f in the L2(Ω) norm.
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Proof. We first prove the result for functions f ∈ H1,2
0 (Ω) so that we may freely consider the (weak)

derivative of f . Since H1,2
0 (Ω) is dense in L2(Ω), this result can be extended to apply to any function

f ∈ L2(Ω). Given any f ∈ H1,2
0 (Ω), let ρN be the N -th error term between f and the partial sum∑N

n=1 αnun, namely ρN = f −∑N
n=1 αnun. To show that this sum converges to f in L2(Ω) is tantamount

to showing that ‖ρN‖2 → 0 as N →∞. Firstly notice that 〈∇ρN ,∇uk〉2 = 0 for every 1 ≤ k ≤ N since

〈∇ρN ,∇uk〉2 =

〈
∇f −

N∑

n=1

αn∇un,∇uk
〉

2

= 〈∇f,∇uk〉2 −
N∑

n=1

αn 〈∇un,∇uk〉2

= λk 〈f, uk〉2 −
N∑

n=1

αn‖∇un‖22δnk

= λkαk − αk‖∇uk‖22
= λkαk − αkλk
= 0,

where we have used the eigenvalue equation with v = f and the orthonormality of un. In a very similar
way, we have that 〈ρN , uk〉2 = 0 for every 1 ≤ k ≤ N since

〈ρN , uk〉2 =

〈
f −

N∑

n=1

αnun, uk

〉

2

= 〈f, uk〉2 −
N∑

n=1

αn 〈un, uk〉2

= αk −
N∑

n=1

αnδnk

= 0.

Since this holds for all 1 ≤ k ≤ N we conclude that ρN ∈ span{u1, u2, . . . , uN}⊥ = XN . We hence have the
following inequality which follows from the Rayleigh quotient definition of λN+1

∫
Ω
|∇ρN |2 dx∫
Ω
ρ2
N dx

≥ inf
u∈XN

∫
Ω
|∇u|2 dx∫
Ω
u2 dx

= λN+1,

and hence:
‖∇ρN‖22 ≥ λN+1‖ρN‖22.

This inequality is the crux of the proof, for we see that

‖∇f‖22 = ‖∇ρN +
N∑

n=1

αn∇un‖22

= ‖∇ρN‖22 + ‖
N∑

n=1

αn∇un‖22

≥ λN+1‖ρN‖22 + 0,
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where we have used the fact that 〈∇ρN ,∇uk〉2 = 0 for every 1 ≤ k ≤ N to enable the Pythagorean theorem
in the second equality. Now the fact that the λN+1 →∞ forces ‖ρN‖2 → 0 because otherwise, the right
hand side of the equation diverges as N →∞, while the left hand side is independent of N and finite as

f ∈ H1,2
0 (Ω), a contradiction. Hence ‖ρN‖2 → 0 meaning that

∞∑

n=1

αnun converges to f in the L2(Ω) sense,

as desired.
To extend this result from functions f ∈ H1,2

0 (Ω) as above to more general f ∈ L2(Ω) we use the fact
that H1,2

0 (Ω) is dense in L2(Ω). (This is not surprising since the even more restrictive set C∞0 (Ω) can be
shown to be dense in L2(Ω)). Given any f ∈ L2(Ω), we may find some family {fε} ⊂ H1,2

0 (Ω) so that
fε → f in L2(Ω) as ε→ 0. In particular then, by the Cauchy Shwarz inequality, we have for each n ∈ N
that 〈f − fε, un〉2 → 0 as ε→ 0 and hence αn,ε = 〈fε, un〉 → αn = 〈f, un〉 in this limit. By careful addition
and subtraction by zero, and by use of the Minkowski inequality on L2(Ω) we have

∥∥∥∥∥f −
N∑

n=1

αnun

∥∥∥∥∥
2

≤ ‖f − fε‖2 +

∥∥∥∥∥fε −
N∑

n=1

αn,εun

∥∥∥∥∥
2

+

∥∥∥∥∥
N∑

n=1

(αn,ε − αn)un

∥∥∥∥∥
2

,

but now by Bessel’s inequality, which holds for any orthonormal set (such as the set un by their construction),
applied to the function fε − f , we have that

∥∥∥∥∥
N∑

n=1

(αn,ε − αn)un

∥∥∥∥∥
2

≤
∥∥∥∥∥
∞∑

n=1

(αn,ε − αn)un

∥∥∥∥∥
2

=

∥∥∥∥∥
∞∑

n=1

〈fε − f, un〉2

∥∥∥∥∥
≤ ‖f − fε‖2,

which is then added to first inequality to get

∥∥∥∥∥f −
N∑

n=1

αnun

∥∥∥∥∥
2

≤ 2‖f − fε‖2 +

∥∥∥∥∥fε −
N∑

n=1

αn,εun

∥∥∥∥∥
2

.

By taking ε small enough so that 2‖f − fε‖2 becomes arbitrarily small and N large enough so that∥∥∥fε −
∑N
n=1 αn,εun

∥∥∥
2

is arbitrarily small, we can bound
∥∥∥f −

∑N
n=1 αnun

∥∥∥
2

to be arbitrarily small as well,

and hence the L2 difference between f and its N -th partial eigenfunction expansion must vanish in the

limit N → ∞. This shows that any f ∈ L2(Ω) can be written as f =

∞∑

n=1

αnun in the L2 sense, where

αn = 〈f, un〉2, meaning that the eigenfunctions do indeed form an orthonormal basis for all of L2(Ω).
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A Sobolev spaces

In this appendix we will fill in some background concerning the simplest Sobolev space, H1,2
0 (Ω), which

is used in our investigation of the eigenvalues/eigenfunction pairs above. We also prove the Poincaré
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inequality, which we call on in this analysis and we very roughly motivate the ideas in the proof of
the Rellich compactness theorem which is in some ways the cornerstone of many of the results about
eigenvalue/eigenfunction pairs.

A.1 The Sobolev space H1,2
0 (Ω)

The Sobolev space H1,2
0 (Ω) is a refinement of L2(Ω) whose additional structure is of some use to us. One

defines H1,2
0 (Ω) by first defining a new inner product on the the set of continuously differentiable, compactly

supported functions C1
0 (Ω), namely the inner product 〈·, ·〉1,2:

〈u, v〉1,2 =

∫

Ω

(∇u · ∇v + uv) dx.

The induced norm from this inner product is

‖u‖1,2 =
√
〈u, u〉1,2 =

(∫

Ω

(
|∇u|2 + u2

)
dx

)1/2

.

Just as C1
0 (Ω) is not complete in the usual norm 〈·, ·〉2 from L2(Ω), C1

0 (Ω) with this norm is not
complete. However, by the definition of this norm, any sequence {uk}∞k=1 which is Cauchy in the ‖ ·‖1,2 norm
will be Cauchy in the L2(Ω) norm too. This is by virtue of the fact that ‖uk − uj‖2 ≤ ‖uk − uj‖1,2 → 0

since uk is ‖ · ‖1,2-Cauchy. (This inequality holds as the H1,2
0 (Ω) norm has an extra non-negative term

|∇u|2 in the integral, which gives a nonnegative contribution to this norm). Since L2(Ω) is complete, we
conclude that such a Cauchy sequence converges to some u ∈ L2(Ω). By including all the limits of all the
‖ · ‖1,2-Cauchy sequences, we get an honest Hilbert space which we denote by H1,2

0 (Ω), called the Sobolev
space. In other words, the definition of this Sobolev space is

H1,2
0 (Ω) = C1

0 (Ω)
‖·‖1,2

.

This is the completion of C1
0 (Ω) with respect to the ‖ · ‖1,2 norm. As remarked before, this completion

consists of adding in some L2(Ω) functions, and hence the resulting space is a subset of L2(Ω).

A.2 Weak derivatives on H1,2
0 (Ω)

Notice that by the above definition, the functions u ∈ H1,2
0 (Ω) do not necessarily have derivatives in the

classical sense, but they do have weak derivatives defined by ∂u
∂xj

= limk→∞
∂uk

∂xj
where uk is any sequence

in C1
0 (Ω) which converges to u in L2(Ω). Notice that this is indeed the weak derivative since for any test

function v ∈ C∞0 (Ω) we have that

∫

Ω

(u− uk)

(
− ∂v

∂xj

)
dx =

〈
u− uk,−

∂v

∂xj

〉

2

≤ ‖u− uk‖2
∣∣∣∣
∣∣∣∣
∂v

∂xj

∣∣∣∣
∣∣∣∣
2

→ 0,

and hence we have that

∫

Ω

u

(
− ∂v

∂xj

)
dx =

∫

Ω

lim
k→∞

uk

(
− ∂v

∂xj

)
dx

=

∫

Ω

(
lim
k→∞

∂uk
∂xj

)
v dx,
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where the swap of derivatives is justified by the divergence theorem because both functions are at least
C1

0 (Ω) and have compact support. Since this holds for any test function v, then u is the weak solution to
∂u
∂xj

= limk→∞
∂uk

∂xj
and this is what we mean when we say the weak derivative of u exists and is equal to

this limit.

A.3 The Poincaré inequality

Theorem A.1 (Poincaré Inequality). If Ω is a bounded domain, then there is a constant C depending only
on Ω so that

∫

Ω

u2 dx ≤ C
∫

Ω

|∇u|2 dx

for all u ∈ C1
0 (Ω) and by completion for all u ∈ H1,2

0 (Ω).

Proof. For u ∈ C1
0 (Ω), we find an a ∈ R large enough so that the cube Q = {x ∈ Rn : |xj | < a, 1 ≤ j ≤ n}

contains Ω. Performing an integration by parts in the x1-direction then gives (the non-integral terms vanish
since u = 0 on the boundary of Q)

∫

Ω

u2 dx =

∫

Ω

1 · u2 dx

= −
∫

Ω

x1
∂u2

∂x1
dx

= −2

∫

Ω

x1u
∂u

∂x1
dx

= 2a

∫

Ω

|u|| ∂u
∂x1
| dx.

Using the Cauchy-Schwarz inequality for L2(Ω) now gives

∫

Ω

u2 dx ≤ 2a

∫

Ω

|u|| ∂u
∂x1
| dx

≤ 2a‖u‖2‖
∂u

∂x1
‖2

≤ 2a‖u‖2‖∇u‖2.

Dividing through by ‖u‖2 gives the desired result with C = (2a)2. For u ∈ H1,2
0 (Ω), we find a sequence

{uk}∞k=1 ⊂ C1
0 (Ω) converging to u in the H1,2

0 (Ω) norm (this is by definition of H1,2
0 (Ω)). We have then

that ‖u − uj‖2 ≤ ‖u − uj‖1,2 → 0 as j → ∞ and similarly ‖∇u − ∇uj‖2 ≤ ‖u − uj‖1,2 → 0. Hence, by
making use of the Cauchy-Schwarz inequality, we have that ‖uj‖2 → ‖u‖2 and ‖∇uj‖2 → ‖∇u‖2 in the
limit j →∞, which allows us to use the Poincaré inequality on uj ∈ C1

0 (Ω) in the limit j →∞ to conclude
that

∫
Ω
u2 dx ≤ C

∫
Ω
|∇u|2 dx as desired.

Theorem A.2 (Rellich Compactness). For a bounded domain Ω, the inclusion map I : H1,2
0 (Ω) → L2(Ω)

is a compact operator meaning that it takes bounded sets in H1,2
0 (Ω) to totally bounded sets (also

known as precompact) in L2(Ω). By the sequential compactness characterization of compact sets,
this is equivalent to saying that for any bounded sequence {un}∞n=1 ∈ H1,2

0 (Ω), there is a subsequence
{unk

}∞k=1 that converges in the L2 sense to some u ∈ L2(Ω).
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Proof sketch. To do in full detail, the proof is rather long and technical, so we will omit most of the details
and instead sketch the main themes of the proof. Given any bounded sequence {fn}∞n=1 ⊂ H1,2

0 (Ω), the
idea is to first smooth out the sequence of functions by convolving them with a so-called mollifier function
ηε depending on a choice of ε so that the resultant sequence of smoothed (also called mollified) functions
{ηε ∗ fn}∞n=1 is better behaved than the original sequence {fn}∞n=1 is. By choosing ηε appropriately, so that
ηε is bounded and with bounded derivative, one can verify that the resulting sequence of smoothed functions
{ηε ∗ fn}∞n=1 will also be bounded and with bounded derivative. This derivative bound is enough to see
that this family is equicontinuous, so one can invoke the Arzela-Ascoli theorem to see that these smoothed
functions have a uniformly convergent subsequence. Using the boundedness of {fn}∞n=1 in H1,2

0 (Ω) allows
one to argue that as ε→ 0, these mollified functions converge uniformly back to the original sequence of
functions. Since the mollified functions have convergent subsequences and since the mollified functions
return to the original sequence, a little more analysis allows one to verify that the original sequence will
enjoy a convergent subsequence as well.

Remark A.3: This theorem is sometimes filed under the title “The Kondrachov compactness theorem”, after
V. Kondrachov who generalized Franz Rellich’s result in the more general compact map H1,p

0 (Ω) into Lq(Ω)
whenever 1 ≤ q ≤ np/(n− p).


