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Abstract: Understanding the evolution of a many bodied system is still a very important problem
in modern physics. Fluid mechanics provides a mechanism to determine the macroscopic motion of
the system. These equations are additionally complicated when we consider a fluid moving in a curved
spacetime. The following paper discusses the derivation of the relativistic equations of motion, uses
numerical methods to provide solutions to these equations and describes how the curvature of spacetime
is modified by the fluid.

1 Introduction

Traditionally, a fluid is defined as a substance that does not support a shear stress. This definition is
somewhat lacking, but it does present the idea that fluids “flow” and distort. Any non-rigid multi-bodied
state can, under a suitable continuum hypothesis, be thus described as a fluid and will follow certain
equations of motion. Here, we define a relativistic fluid as classical fluid modified by the laws of special
relativity and/or curved spacetime (general relativity). The following paper attempts to provide a basic
introduction to these equations of motion of a relativistic fluid.

Fluid dynamics is an approximation of the motion of a many body system. A true description of
the evolution of a fluid would, in principle, need to account for the motion of each individual particle.
However, this description is impractical and of no substantial worth when modelling sufficiently large systems.
Therefore, provided that the desired level of accuracy is much lower than the continuum approximation,
it is acceptable to consider a system as a fluid. The applications of such an approximation to relativistic
fluids are varied and have been applied to the many different domains from plasma physics to astrophysics.

In this discussion, we begin with introducing the relevant equations found in Newtonian fluid mechanics.
We follow this with an introduction to the necessary mathematics to describe a four dimensional curved
spacetime. The stress-energy tensor of a perfect fluid is introduced and the equations of motion of a
relativistic fluid are derived. We briefly mention the modification of the stress-energy tensor in the presence
of viscosity. We finish off with a simple calculation of how the stress-energy of the fluid in question modifies
the curvature of space-time. The reader is assumed here to have a basic understanding of relativity along
with a low-level understanding of Newtonian fluid dynamics.

We note that for the remainder of this paper with will use units such that c = G = 1.

2 Introductory Mathematics

Classical fluids have, from a theoretical perspective, played a very important role in developing a great
deal of the mathematics of vector calculus of partial differential equations (pdes), and forms the core of
our understanding of problems in multi-body physics. Extension of this classical field to the domain of
relativity requires the use of the understanding of motion in a curved spacetime. An introduction to the
mathematics required for this development is provided here.
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2.1 Classical fluids

Determining solutions to the classical equations of motion of a fluid is still a very active area of research. If
we just consider a Newtonian fluid (water and air are both good examples of this type), the strain tensor
can be written as

eij =
1

2

(
∂ui
∂xj
− ∂uj
∂xi

)
,

where uj , xj are the jth components of the fluid velocity and coordinate vectors. For the remainder of this
paper, we will employed the Einstein summation convection xjxj =

∑
j x

jxj over the range of the indices.

In this domain, there are still four basic equations to satisfy

1. Continuity equation. This equation is derived through the hypothesis of conservation of mass. In its
typical form, it can be written down as

Dρ

Dt
+ ρ∇ · u = 0,

where D
Dt = ∂

∂t + uj
∂
∂xj called the material derivative, and ρ the density of the fluid.

2. Momentum equation. The fluid must also conserve momentum. We ensure this by requiring that

Duj
Dt

=
∂Tij
∂xj

− ρgj

Tij = −Pδij + 2µeij + λemmδij ,

where Tij is the stress tensor, P is the pressure , gj is the constant gravitational acceleration, δij is
the unity matrix, with µ and λ are fluid dependent scalars. If u is incompressible, (∇ · u = 0) these
equations reduce to the Navier-Stokes Equations.

3. Equation of state. This equation defines the relation between pressure (P ), temperature (T ), and
density (ρ). This equation can vary depending on the fluid in question. For an ideal gas it can be
written

P = ρRT

with constant R.

4. Temperature/Energy equation. This final equation is needed to deal with the thermodynamic effects
within the medium. If we consider the heat flux vector qi at any given point, we need to solve for
internal energy e

ρ
De

Dt
= − ∂qi

∂xi
− P

(
∂ui
∂xi

)
+ φ

with density (ρ), pressure (P), velocity (ui), and viscous dissipation (φ). This equation indicates that
the change in energy is due to convergence of heat, volume compression and viscous dissipation.

All this gives us a system of six, non-linear coupled pdes. These equations have been included to
help guide the reader in understanding how the following equations reduce in the Newtonian limit. It is
important to realize that these equations have still not been solved and currently represent one of the most
challenging problems in applied mathematics. For further details, Kundu [Kun90] has a well written text
on classical fluid mechanics.
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2.2 Curved spacetime

In order to understand relativistic fluids, if becomes important to develop the mathematical tools to look
at curves in a curved spacetime. While the reader is assumed to have a basic knowledge of differential
geometry, a brief outline of the some of the mathematics is presented here.

The length of an infinitesimally small line element in 4-space can be found by

ds2 = gµνdx
µdxν ,

where µ,ν run from {0, 1, 2, 3} or, equivalently, {t, x, y, z} in Cartesian spacetime. Note that this line
element is invariant of the chosen coordinate system, that is, it is a scalar. Here, the metric gµν
(of form - + + +) serves the role of a weighting function, used in defining the length of a path. In
a curved space the placement of the index is very important, and we use the metric gµν to raise and lower
the indices.

V µ = gµνVν or Vµ = gµνV
ν .

Consequently,

V µ = gµνgνρV
ρ → gµνgνρ = δµρ , (2.1)

where δµρ is the Kronecker delta.
The infinitesimal length of a curve ds2 divides up into three different regimes.

1. Timelike. If ds2 < 0, the curve is called timelike. Two events are timelike separate if there exists some
rest frame, in which both events occur at the same location at different times.

2. Null. If ds2 = 0, the curve is null. There does not exist a rest frame.

3. Spacelike. If ds2 > 0, the curve is spacelike. Two events are spacelike separated if there exists some
rest frame, in which both events occur at the same time at different locations.

It turns out that all matter travels along timelike curves and light moves along null paths. As such, it is
possible to define, for timelike curves, a proper time (τ) which is the time measured by an observer in a rest
frame.

dτ2 = −ds2. (2.2)

Using this definition, it is possible to define the 4-vector velocity

uµ =
dxµ

dτ
.

As a quick aside, the purpose of introducing this tensor calculus is to allow for a derivation of physical
laws, independent of a particular coordinate system. As such, a tensor will necessarily obey certain
transformation laws. We provide here the transformation relation for a vector, with higher order tensors
transforming in a consistent manner.

V̄µ =
∂xν

∂x̄µ
Vν or V̄ µ =

∂x̄µ

∂xν
V ν .

2.2.1 The covariant derivative and the material derivative

It is important to know how to find the derivative at a given point of a vector field. In a flat spacetime, the
rate of change of some vector field V ν in a particular direction xµ can be found simply by taking the partial
derivative. However, the derivative is not so easy to define in a curved spacetime. As an example, consider
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the vector V = V µeµ where eµ is some basis vector at a point. In a flat Cartesian coordinate system, the
basis vectors are constant, but in a curved spacetime, they are not. We see then that

∂µ (V νeν) = (∂µV
ν) eν (Flat Cartesian)

∂µ (V νeν) = (∂µV
ν) eν + V ν∂µeν . (Curved Space)

From this example it has been shown that there are two main issues to resolve when defining the
derivative in a curved space. First, how does one find a limit in a curved spacetime? And second, how do
we ensure that the derivative transforms correctly. It can be shown that both of these requirements can be
met by defining the covariant differential operator

∇µV ν = ∂µV
ν + ΓνµσV

σ

Γµνρ =
1

2
(∂ρgµν + ∂νgρµ − ∂µgνρ) , (2.3)

where commas denote partial derivatives. Here we see that the connection coefficient, Γ, “corrects” for the
curvature of the space. Similarly, for a rank-2 tensor, we can write

∇ρTµν = ∂ρT
µν + ΓµσρT

σν + ΓνσρT
µσ.

Before we continue, we quickly write down a few important identities which will be important later.
First, the material derivative can be written,

D

Dτ
V ν(xµ(τ)) =

∂xµ

∂τ
∇µV ν = V µ∇µV ν .

Secondly, it can also be shown that for timelike curves, by Equation 2.2, that

uµuµ = −1 ⇒ uµ∇νuµ = 0. (2.4)

This identity will prove invaluable when working through the details below. Finally, we note that for
Riemann manifold (considered here),

∇µgµν = 0 (2.5)

as a result of the definition of the connection coefficients.

2.2.2 Curvature and the Riemann tensor

We briefly present the ideas here simply for completeness and the details of the following calculations have
been omitted. This section is presented merely to remind the reader of where the Einstein field equations
have their origins. Anderson [AC07] has a good discussion of many these concepts.

The measure of the curvature of space is defined in terms Riemann tensor (Rµνρσ), Ricci tensor (Rµν),
and Ricci scalar (R).

Rµνρσ = Γµνσ,ρ − Γµνρ,σ + ΓµτρΓ
τ
νσ − ΓµτσΓτνρ (2.6)

Rµν = Rρµρν

R = Rρρ



Relativistic Fluid Dynamcis 48

From the Bianchi identities

∇λRµνrhoσ +∇ρRµνσλ +∇σRµνλρ = 0,

it can be shown that

∇ν
[
Rµν − 1

2
Rgµν

]
= 0.

As such, we define the Einstein tensor

Gµν = Rµν −
1

2
Rgµν .

2.3 Einstein field equations

John Wheeler once said

“Mass tells space-time how to curve, and space-time tells mass how to move.”

The Einstein tensor is a measure of the curvature of spacetime. Mass is merely a form of energy and,
as such, we denote the stress-energy tensor, Tµν , containing all of the information of the energy of a system.
Thus, these two tensors must be in balance, which is represented in the Einstein field equations (efe)

Gµν =
8πG

c2
Tµν , (2.7)

where we include the constants c,G to present the efe in their usual form. Recall that we are using units
such that c = G = 1.

The efe represent a system of ten non-linear partial differential equations. The complexity of these
equations explains why few analytical solutions exist.

We’ve seen above that

∇νGµν = 0

applying this to Equation 2.7

∇µTµν = 0. (2.8)

This equation is very important in fluid dynamics, as we shall see. This equation encapsulates the idea of
energy and momentum conservation.

3 Governing Equations

One of the most difficult aspects of relativistic fluid dynamics is keeping track of “what-goes-where”, and
what index corresponds to what physical property. In Newtonian fluids, all of the equations clearly have their
own distinct physical interpretation, but when we extend these ideas to higher dimensions it is important
keep track of what physics we are referring too.

It may not appear clear, however, how Equation 2.8 relates to the standard Newtonian fluid dynamics
described above. The easiest way to compare these two is to first define projection operators, which will
allow us to understand this equation from a more intuitive front. Anile [Ani89] has a good description of
introductory relativistic fluid mechanics and the use of these projectors.
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3.1 Projections

For any timelike curve pµ, we can project this into its timelike and spacelike components. To project it into
its pure timelike contribution, we contract pµ onto uµ. This projection captures what occurs in the rest
frame of an observer as he travels along with the fluid. This is sometimes associated with “Lagrangian”
coordinates.

Alternatively, sometimes it is valuable to project an equation into its purely spacelike components. We
do this by defining

hµν = gµν + uµuν or hµν = δµν + uµuν .

It is left to the reader to observe that the timelike projection uµ and the spacelike projection hµν are
orthogonal.

We then find that Equation 2.8 can be decomposed into an energy conservation component

uν∇µTµν = 0

and a momentum conservation component

hρν∇µTµν = 0.

3.2 Stress energy tensor

Different systems will have different stress energy tensors. Often, a lot of the problems of viscosity and
other effects can be neglected compared with pressure or other more dominant effects. We will consider
here the “perfect fluid” stress energy tensor which is the one typically introduced when approaching the
subject for the first time.

In the rest frame of the observer it can be written

Tµν =




e 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p



µν

,

or, in a more general frame,

Tµν = (e+ p)uµuν + pgµν , (3.1)

with gµν the metric, p pressure, e the total energy density.
Typically, we can write out that

e = ρ(1 + ε),

with ρ the rest frame mass energy density and ε internal energy density per unit mass.
The continuity equation can be written down as the following

∇µ (ρuµ) = 0,

which ensures conservation of mass.
A more general conservation energy equation of this system can then be derived by finding the timelike

component of Equation 2.8, projecting it onto uν :

uµ∇µe = − (e+ p)∇µuµ, (3.2)
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where we recall that ∇µgµν = 0, in the space we are considering here, and we have used the identities of
Equation 2.4.

Similarly, we can project Equation 2.8 into its spacelike component using hαµ:

(e+ p)uµ∇µuα = −hαµ∇µp, (3.3)

where, again, we have used the identities found in Equation 2.4

What we have shown here are the relativistic equivalent equations to the momentum and mass
conservations equations given in the Newtonian regime. In a relativistic case, it is the conservation of
energy, not mass, which concerns us. However, as we return to the Newtonian domain, other sources of
energy (kinetic, etc.) tend to be dominated by mass.

The equation of state and the conservation of temperature equations are not so easy to find. These
need to be derived statistically using thermodynamic principles for the fluid in question.

3.3 Relativistic Euler equations

Our goal is to write out a system of equations which can be used to solve for the flow of a fluid. At this
point we have a conservation of energy equation (Equation 3.2) and a conservation of momentum equation
(Equation 3.3). It is insightful to compare these equations with their classical counterparts in order to help
understand what these equations mean. We will do this by expanding Equation 3.3

(e+ p)uµ∇µuν = −∇νp− uνuµ∇µp,

from which we can write out the spatial components as

(e+ p)
Du

Dτ
= −∇p− u

Dp

Dτ
(Momentum equation)

uµ∇µe = − (e+ p)∇µuµ, (Continuity equation)

where D
Dτ = uµ∇µ. Now we see that if in the low velocity limit (ui � 1), with e� p, e ≈ ρ, and the fluid

is incompressible (∇ · u = 0) as is typical with water, we get back out typical Euler equations of Newtonian
fluids. (Incompressible, viscous free Navier-Stokes equations.)

ρ
Du

Dt
= −∇p

Dρ

Dt
= 0.

For a more detailed look at Newtonian fluids, see Kundu [Kun90].

We stop here and see that we have extended the Newtonian fluid equations into their relativistic form.
Of course we are missing three very important items from this derivation. We have left out all viscosity
terms, temperature evolution, and we still have not yet written down an equation of state. These are three
fundamental properties which we have ignored here. The reason for this is simple; these additions are very
complicated. We shall discuss these further in this article, however, they have been omitted here in order to
aid the reader in understanding the current physical content.

We should also note here that we have assumed a known metric for our purposes. This is often
acceptable for certain application; however, a more general relativistic treatment is required when the fluid
itself causes space-time to curve.
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3.4 Viscosity

Before continuing, we note that the we have omitted from the equations of motion viscosity. The addition
of viscosity to a relativistic fluid will amount to an addition of non-diagonal terms to the stress energy
tensor. These terms drastically increase the complexity of the equations. Viscosity plays an important role
in the dispersion of energy of a system and are indispensable in the study of turbulence.

We present here the modification of the stress-energy tensor as a result of viscosity. We compare these
terms to their classical counterpart. Landau [LL59] has a brief discussion on the topic (Alternatively, see
the book by Wilson and Mathews [WM03]).

Tµν = pgµν + (e+ p)uµuν + τµν

τµν = −η
([
∇µuν +∇νuµ︸ ︷︷ ︸

]
+ uµu

α∇αuν + uνu
α∇αuµ

)
− (ζ − 2

3
η)

[
∇αuα︸ ︷︷ ︸

]
(gµν + uµuν)

Here we emphasize the relation to the Newtonian case. η and ζ are coefficients of viscosity.

4 Steady State Solution

The simplest relativistic fluid derivation is the hydrostatic problem. In the case, we can assume that the
fluid is at rest and we write out that

u0 =
√−g00 ui = 0,

which is simply stating that the fluid has no velocity in 3-space.
Looking back to the momentum equation (Equation 3.3) and Equation 2.3, we find that

−(e+ p)Γ0
ν0u0u

0 = −∇νp
1

e+ p
∇νp = −1

2
∂ν ln

√−g00, (4.1)

where, the metric allows g00 = 1
g00

.

As Landau points out [LL59], in the weak field limit where (e+ p) ≈ ρ and g00 = −1− 2φ with

ln(1 + 2φ) ≈ 2φ

Equation 4.1 reduces to

1

ρ
∇P = −∇φ

∇P = ρg,

which is the classical condition of hydrostatics.

4.1 Numerical energy transport

We can now write out the equations that must be obeyed by the relativistic fluid. For the purposes of this
paper, we will reduce down the equations under certain assumptions.

1. One-dimensional fluid flow

2. Flat Minkowski space

3. The fluid is barotropic (i.e. P = C e, where C is a constant)
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4. Energy density (e) is conserved within the medium.

As the energy density is constant we can write out the following system of equations

∇µuµe = 0

(e+ p)uµ∇µuν + uνu
µ∇µp = −∇νp

p = Ce,

which, under the barotropic fluid assumption, reduce further to

∇µ(uµe) = 0 (4.2)

uµ∇µuν =
−C

(1 + C)e
∇νe. (4.3)

From the Lorentz transforms, it can be shown that

t = γτ where γ =
(
1− v2

)−1
2 .

Under this transformation, we find that

uµ =
dxµ

dτ
=
dxµ

dt

dt

dτ
= γvµ.

Along with assumptions the remaining, Equations 4.2 and 4.3, become

∂t(γe) + ∂x(γev) = 0

γ∂t(γv) + ∂x

(
(γv)2

2

)
= − C

1 + C
∂x ln e.

Using a spectral fourth order Runge-Kutta differencing scheme, we can attempt to solve these equations.
The details of the method can be found in Duran’s numerical methods text [Dur99]. The details have
been omitted here to avoid confusion. Appendix A contains the code used to approximate the system of
equations along with a brief description of the method.

In order to demonstrate the solution to this equation, we will use periodic boundary conditions. We will
assume that all quantities are unit-less and we will implement initial conditions to represent a relativistic
fluid with the energy density grouped into a dense region. A hyperbolic secant function was selected for
the energy density function as it represents a single energy density packet centred around the origin. A
relativistic velocity of 0.5c was selected, and a background energy of one was used to ensure a non-zero
energy level throughout the domain.

u(x, 0) = 0.5

e(x, 0) = sech
( x

0.5

)
+ 1

A time step of ∆t = 1e − 5 and 512 grid points were used. Figure 4.1 outputs the results of the
computation for three different values of C = {0, 1

3 ,
2
3} corresponding to non-interacting matter, relativistic

matter, and cold matter respectively. For details on these values, Battaner [Bat96] has a description of the
statistical mechanical derivation.

The purpose to providing this numerical solution if three-fold. First, it demonstrates the complexity
of the corresponding solution. It can be clearly seen that the interaction between the velocity and the
energy density is very complicated. For C=0, there is no effect of the energy density on the velocity, and
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Figure 4.1: Energy transport relativistic hydrodynamics for values of P =
{0e (solid line), 1

3e (dashed line), 2
3e (dash-dot line)} at time steps t={0, 1, 2} where both the energy

density (e) and 3-velocity (v) have been output.

vice-verse. For C > 0, the change of one feeds back onto the other causing the solutions to distinguish
themselves. Second, this serves as a basis upon which future work can be preformed. Thirdly, these numerics
demonstrate the fact that, even under the simplifying assumptions of Minkowski space, the solution to the
problem highly dependent upon the relativistic components of the equation. In this case, we see that the
higher proportion of P to the energy density (i.e. larger values of C), the more rapid the transition from
one state to another.

5 Spacetime Curvature

Up to this point we have assumed that the metric was known, that is the fluid does not substantially change
the curvature of spacetime. This has many applications, however, it does leave something desired in order
to get a more general theory. We return to the Einstein field equations

Gµν = 8πGTµν

Rµν −
1

2
gµνR = 8πGTµν .

It is often convenient to convert this into the form

Rµν = 8πG

(
Tµν −

1

2
gµνT

α
α

)
. (5.1)

These ten differential equations prove very difficult to solve. We can however, show that under certain
symmetries, the system reduces to a simplified form.

For the purposes of this paper, we consider an application to a star. In reference to this, we will assume
that the metric should be spherically symmetric. For the present purpose, let us also assume that the metric
is constant in time. In reference to this, it can be shown that the most generic metric that can be written
in spherical coordinates is
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gµν = diag
[
−B(r), A(r), r2, r2 sin2 θ

]
µν
, (5.2)

for which we can easily calculate the connection coefficients.
The components of the Ricci tensor can be found using Equation 2.6. They are

R00 = − 1

2A

d2B

dr2
+

1

4A

dB

dr

(
1

A

dA

dr
+

1

B

dB

dr

)
− 1

r

1

A

dB

dr

Rrr =
1

2B

d2B

dr2
− 1

4B

dB

dr

(
1

A

dA

dr
+

1

B

dB

dr

)
− 1

r

1

A

dA

dr

Rθθ = −1 +
r

2A

(
− 1

A

dA

dr
+

1

B

dB

dr

)
+

1

A

Rφφ = sin2 θRθθ

else = 0. (5.3)

For a more detailed explanation, see Battaner [Bat96].

5.1 Schwarzschild metric

The previous assumptions prove reasonable when considering a star in space. In the region external to the
star (provided the star is not rotating or charged) the stress energy tensor becomes null, and thus we must
solve the complete set of equations

Rµµ = 0.

The original solution to this problem was originally proposed by Schwarzschild in  (the original
article has recently been republished [Sch99]). Schwarzschild showed that the metric

gµν = diag

[
−
(

1− 2M

r

)
,

(
1− 2M

r

)−1

, r2, r2 sin2 θ

]

µν

is a solution.

5.2 Curvature Deformation

Inside the star, however, is a very different story. We will assume here that we still have spherical symmetry
and the star is not rotating or charged. Many of the following details can be found in Battaner [Bat96]. We
find that the basic form of the metric is the same as in (5.2), as such the Ricci tensor will in turn, have the
same basic structure as Equation 5.3. However, now the field equations become

Rµν = 8π

(
Tµν −

1

2
gµνT

α
α

)
.

Recall that for a perfect fluid (Equation 3.1), we can write the stress energy tensor as

Tµν = (e+ p)uµuν + pgµν .

In the rest frame of the fluid we can write that

uj = (−
√
B, 0, 0, 0).
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Thus, the solution stress energy tensor becomes

Tµν = diag
[
eB, pA, pr2, pr2 sin2 θ

]
. (5.4)

We can then use the metric on Equation 5.4 to find

Tαα = 3p− e. (5.5)

Thus, Equations 5.4 and 5.5 combined with Equation 5.1 give, (Recall that we use units such that
G=1),

Rµν
8π

= diag

[
1

2
(3p+ e)B,−A

2
(p− e),−r

2

2
(p− e),−r

2 sin2 θ

2
(p− e)

]
, (5.6)

which, equated with Equation 5.3, provides a complete system of equations to solve for the components
of the metric.

− 1

2A

d2B

dr2
+

1

4A

dB

dr

(
1

A

dA

dr
+

1

B

dB

dr

)
− 1

r

1

A

dB

dr
= −4π(3p+ e)B (5.7)

1

2B

d2B

dr2
− 1

4B

dB

dr

(
1

A

dA

dr
+

1

B

dB

dr

)
− 1

r

1

A

dA

dr
= 4πA(p− e) (5.8)

−1 +
r

2A

(
− 1

A

dA

dr
+

1

B

dB

dr

)
+

1

A
= 4πr2(p− e) (5.9)

Rφφ = sin2 θRθθ. (5.10)

Combining Equations 5.7 and 5.8 gives

−1

r

(
dB

dr
+
B

A

dA

dr

)
= −8πAB(e+ p), (5.11)

using Equation 5.9,

d

dr

( r
A

)
= 1− 8πr2e. (5.12)

Recall that here e is the energy density of the fluid, containing mass and internal energy, so we can write
out that

U =

∫ r

0

4πr2edr

r

A
= r − 2U

A =

(
1− 2U

r

)−1

.

Keep in mind that we have two boundary conditions on A. At r = 0, we want to make sure the A is finite,

and for r > R, the radius of the star, we require A to become the Schwarzschild value, AR =
(
1− 2M

R

)−1
.

Similarly, Equations 5.11 and 5.9 provide an equation for B

1

B

dB

dr
=

2A

r2

(
U + 4πr3p

)
. (5.13)
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Figure 5.1: Solution to the A and B metric elements, assuming units such that the radius of the star is
R = 1, and the mass is given as M = 1/π.

Here we can find a boundary condition such that, on the surface of the star, p = 0, U = M , thus, (where
BA =1)

dB

dr
=

2M

R2
, (5.14)

where again R is the radius of the star.
This calculation is meant to demonstrate how the stress-energy tensor modifies the curvature of

space-time. In the domain without the nice symmetric properties we’ve introduced here, it is often necessary
to solve the equations numerically. We refer the reader to further texts on the subject, such as the book
written by Wilson [WM03]. These computations themselves prove very difficult and are omitted here.

5.3 Graphical solution

In order to understand the metric internal to the star, we consider the graph of A and B as a function of
distance from the origin. For simplicity we assume that the density of the star is constant, and assume units
such that the radius is 1 and mass is 1/π. This is meant to provide a qualitative solution to the metric
inside of a star. Figure 5.1 plots the resulting values of A and B under these conditions.

Notice that the solution is piecewise continuous at surface of the star (r = 1). Notice also that the A
parameter becomes close to 1 near the centre, its asymptotic limit.

6 Conclusion

The current paper is meant to provide a brief introduction to relativistic fluids. As much as possible, this
work has tried to compare the relativistic results with their Newtonian counterparts in order to provide
basis for the new material. In here, the equations of motion of a perfect fluid have been written out and the
static solution has been provided.

One major extension of relativistic hydrodynamics which we has not tackled here is Magnetohydrody-
namics (mhd). mhd is the study of electrically charged fluids and has been applied to a wide variety of
topics including stellar modelling. Golub [GP10] has a good classical approach to the topic. This is still a
very active area of research.

For a more in depth discussion of relativistic hydrodynamics, the reader is referred to two well written
texts on the subject. Andersson’s discussion [AC07] provides a much more rigorous approach to the
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subject, and spends a great deal of time developing the mathematics of differential geometry. Also, Anile’s
book [Ani89] extends much of the above work to the case of mhd. There are many other well written texts
on the subject, we simply provide the reader with two examples to serve as a basis for further research.
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A Numerical Hydrodynamics Methodology

This section discusses the code used to compute the solution to the relativistic fluid equations found in
Section 4.1. The source code is available along side the online version of this article.

Putting the equation into the following form

∂tu = F (u),

this spectral method decomposes the function uj , sampled at the grid points xj , into its truncated Fourier
series

uj =

N−1
2∑

k=− (N+1)
2

ak exp ikxj ,

with N the number of grid points. Note that we have removed the k = N/2 wavenumber.

This technique allows us to use Matlab’s built in fft methods to compute derivatives of the corre-
sponding function. Once the method for computing F has been established, we can then implement a
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Fourth-Order Runge-Kutta method using

q1 = ∆tF (un)

q2 = ∆tF (un +
q1

2
)

q3 = ∆tF (un +
q2

2
)

q4 = ∆tF (un + q3)

un+1 = un +
q1 + 2q2 + 2q3 + q4

6
,

where the superscripts, n, refer to the time step. The details of such a computation are included in
Durran [Dur99].


