
The Waterloo Mathematics Review 35

A Systematic Construction of Almost Integers
Maysum Panju

University of Waterloo
mhpanju@uwaterloo.ca

Abstract: Motivated by the search for “almost integers”, we describe the algebraic integers known as
Pisot numbers, and explain how they can be used to easily find irrational values that can be arbitrarily
close to whole numbers. Some properties of the set of Pisot numbers are briefly discussed, as well as
some applications of these numbers to other areas of mathematics.

1 Introduction

It is a curious occurrence when an expression that is known to be a non-integer ends up having a value
surprisingly close to a whole number. Some examples of this phenomenon include:

eπ − π = 19.9990999791 . . .
(

23

9

)5

= 109.0000338701 . . .

88 ln 89 = 395.0000005364 . . .

These peculiar numbers are often referred to as “almost integers”, and there are many known examples.
Almost integers have attracted considerable interest among recreational mathematicians, who not only try
to generate elegant examples, but also try to justify the unusual behaviour of these numbers. In most cases,
almost integers exist merely as numerical coincidences, where the value of some expression just happens to
be very close to an integer. However, sometimes there actually is a clear, mathematical reason why certain
irrational numbers should be very close to whole numbers. In this paper, we’ll look at the a set of numbers
called the Pisot numbers, and how they can be used to systematically construct infinitely many examples of
almost integers.

In Section 2, we will prove a result about powers of roots of polynomials, and use this as motivation to
define the Pisot numbers. We will also show how Pisot numbers can generate many almost integers. In
Section 3, we will explore the set S of Pisot numbers in more detail, and in Section 4, we will list some other
properties and applications of the Pisot numbers. Finally, Section 5 will present some concluding remarks.

2 Pisot Numbers and Almost Integers

We begin by recalling some definitions from the study of polynomials.

Definition 2.1. A number is called an algebraic integer if it is the root of some polynomial of the form
f(x) = xn + an−1x

n−1 + · · ·+ a1x+ a0, where the coefficients ai are all integers. If f(x) is the minimal
polynomial for some algebraic integer α, then the roots of f(x) other than α are called the Galois
conjugates of α.
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The main result used to motivate the construction of Pisot numbers is that for any monic polynomial
f(x), the sum of the powers of the roots of f(x) will always be exactly an integer. This is made precise in
the following theorem.

Theorem 2.1. Let f(x) be a monic, irreducible polynomial of degree d with (not necessarily distinct) roots
θ1, . . . , θd. Then θn1 + · · ·+ θnd is an integer for all integers n ≥ 0.

Proof. We may write f(x) = (x− θ1) · · · (x− θd). Taking the natural logarithm of both sides gives

log f(x) =
d∑

i=1

log (x− θi).

Differentiating, we obtain
d

dx
log f(x) =

f ′(x)

f(x)
=

1

x− θ1
+ · · ·+ 1

x− θd
.

If we now substitute 1/x for x in the above equation, then we get

f ′(1/x)

f(1/x)
=

1

1/x− θ1
+ · · ·+ 1

1/x− θd
,

and so

xd−1f ′(1/x)

xdf(1/x)
=

1

1− xθ1
+ · · ·+ 1

1− xθd

=

d∑

i=1

1

1− xθi
.

By expressing the ratio 1/(1− xθi) as an infinite geometric series, this equation becomes

xd−1f ′(1/x)

xdf(1/x)
=

d∑

i=1

∞∑

n=0

xnθni

=

∞∑

n=0

(
d∑

i=0

θni

)
xn

=

∞∑

n=0

tnx
n,

where we let

tn =
d∑

i=0

θni .

To prove the theorem, it remains to show that tn ∈ Z for all integers n ≥ 0.
We do this by first writing f(x) in a different way. There exist integers a0, . . . , ad−1 such that we may

write
f(x) = xd + ad−1x

d−1 + · · ·+ a1x+ a0

and so
f ′(x) = dxd−1 + (d− 1)ad−1x

d−2 + · · ·+ 2a2x+ a1.

This gives us that

xd−1f ′(1/x) = d+ (d− 1)ad−1x+ · · ·+ 2a2x
d−2 + a1x

d−1

xdf(1/x) = 1 + ad−1x+ · · ·+ a1x
d−1 + a0x

d.
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Putting all of this together, we get

xd−1f ′(1/x)

xdf(1/x)
=
∞∑

n=0

tnx
n

xd−1f ′(1/x) =
(
xdf(1/x)

) ∞∑

n=0

tnx
n

d+ (d− 1)ad−1x+ · · ·+ a1x
d−1 =

(
1 + ad−1x+ · · ·+ a0x

d
) ∞∑

n=0

tnx
n.

We now compare coefficients on both sides of this equation, to obtain the system

d = t0

(d− 1)ad−1 = t1 + ad−1t0

(d− 2)ad−2 = t2 + ad−1t1 + ad−2t2

...

from which we see that all of the ti do, in fact, take integer values. Hence θn1 + · · ·+ θnd ∈ Z for all integers
n ≥ 0, as desired.

We now present the definition of a Pisot number. These numbers were first studied by Thue [Thu12]
in 1912, and were later looked at by Hardy [Har19] in 1919. However, they only gained popularity in the
wider mathematical community after Pisot’s dissertation concerning them in 1938 [Pis38].1

Definition 2.2. A Pisot number is a real, algebraic integer larger than 1 whose Galois conjugates all have
absolute value less than 1.

Pisot numbers can be identified by looking at the roots of their minimal polynomials on the complex
plane. If f(x) is the minimal polynomial for a Pisot number α, then all of the roots of f(x) lie strictly
within the unit disc on the complex plane, except for α, which lies outside the disc on the positive real axis.

Using Theorem 2.1, we will show that by taking high powers of Pisot numbers, we obtain values that
are very close to whole numbers. First, however, we need to make more precise what we mean by “closeness
to a whole number”.

Definition 2.3. Given a real number x, we define the distance (from x) to the nearest integer to be
‖x‖ = |x− n|, where n is taken to be the closest integer to x.

For example, we have ‖7‖ = 0, ‖π‖ = 0.14159 . . ., and ‖2.6‖ = 0.4. Note that for any real number x,
‖x‖ ranges between 0 and 0.5, and ‖x‖ = 0 if and only if x is an integer. Effectively, ‖x‖ measures how
close x is to being a whole number, with small values of ‖x‖ corresponding to almost integers.

Theorem 2.2. If α is a Pisot number, then limn→∞ ‖αn‖ = 0.

1Pisot’s preliminary results were independently proven in 1941 by Vijayaraghavan [Vij41], who was also interested in
studying this class of numbers. Some mathematicians therefore refer to these numbers as Pisot-Vijayaraghavan numbers, or
PV numbers, in recognition of the contributions of both mathematicians, as suggested by Salem in 1943. Unfortunately for
Vijayaraghavan, however, most of the literature regarding these numbers in refers to them simply as Pisot numbers.
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Figure 2.1: A plot of the roots of the polynomial f(x) = x4 − x3 − 1 in the complex plane, along with the
unit circle. Since only one root of the polynomial, approximately 1.38, lies outside the unit disc, this root is
a Pisot number.

Proof. Let α have Galois conjugates θ2, . . . , θd. Since |θi| < 1 for all i = 2, . . . , d, we have

lim
n→∞

θni = 0,

for all i = 2, . . . , d, and in particular,

lim
n→∞

(θn2 + θn3 + · · ·+ θnd ) = 0.

From the result of Theorem 2.1, we have for any n ≥ 0, there exists some integer bn such that

αn + θn2 + · · ·+ θnd = bn.

We now see that

bn − αn = θn2 + · · ·+ θnd

lim
n→∞

(bn − αn) = lim
n→∞

(θn2 + · · ·+ θnd )

= 0

Thus as n grows large, αn gets arbitrarily close to the integer bn, and correspondingly, we have that ‖αn‖
approaches 0, as desired.

At last, we see a systematic way of constructing almost integers. Given any Pisot number α, by taking
successively higher powers of α, we obtain values that get closer and closer to whole numbers. The time is
ripe for us to look at some examples of Pisot numbers, and the almost integers that they generate.

• For every integer n ≥ 2, we have n as the root of f(x) = x− n, and so every positive integer larger
than 1 is a Pisot number. The powers of integers, however, are exactly integers already, so these Pisot
numbers are not too useful in generating almost integers.

• The golden ratio φ = (1 +
√

5)/2 = 1.61803 . . . is the root of f(x) = x2 − x− 1, with Galois conjugate
−φ−1 = −0.61803 . . . having absolute value less than 1. Thus φ is a Pisot number.

• 1 +
√

2 = 2.41421 . . . is a Pisot number, with minimal polynomial f(x) = x2 − 2x − 1 and
1−
√

2 = −0.41421 . . . as its Galois conjugate.

• 1.46557 . . . is a cubic Pisot number, with minimal polynomial f(x) = x3 − x2 − 1 and
−0.23278 . . .± i0.79255 . . . as its Galois conjugates.
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Table 2.1: Some Pisot numbers and corresponding almost integers.

α 1.61803 . . . = 1+
√

5
2 2.41421 . . . = 1 +

√
2 1.46557 . . .

α2 2.6180. . . 5.8284. . . 2.1478. . .

α3 4.2360. . . 14.0710. . . 3.1478. . .

α4 6.8541. . . 33.97056. . . 4.6134. . .

α5 11.0901. . . 82.01219. . . 6.7613. . .

α10 122.99186. . . 6725.9998513. . . 45.7161. . .

α15 1364.000731. . . 551614.0000018128. . . 309.10353. . .

α20 15126.9999338. . . 45239073.99999997789. . . 2089.96315. . .

α25 167761.00000596. . . 3710155682.000000000269. . . 14131.01273. . .

Some of of the almost integers corresponding to powers of these Pisot numbers are listed in Table 2.1.

It is apparent that by taking higher powers of these Pisot numbers, we obtain irrational numbers that
get closer and closer to whole numbers. As can be deduced from Theorem 2.2, the rate at which these powers
approach whole numbers depends on the how large the absolute values of the Galois conjugates of the Pisot
numbers are. We can see that the powers of 1 +

√
2 approach integers rapidly, since its Galois conjugate has

a relatively small modulus of 0.414 . . .. On the other hand, the Galois conjugates of 1.46557 . . . both have
absolute value 0.82603 . . ., which is much closer to 1, resulting in fairly slow convergence to almost integers.

One of Pisot’s original and noteworthy results was that the Pisot numbers are the only algebraic
numbers that can generate almost integers this way. In particular, he was able to show that if α > 1 is an
algebraic number, then the existence of some nonzero, real λ such that

lim
n→∞

‖λαn‖ = 0

is sufficient to conclude that α is a Pisot number [Pis38]. It is unknown if this result remains true for
non-algebraic α, as no transcendental counterexamples have been found.

3 The Structure of S

In the previous section, we have shown that a clever method to construct almost integers is to find a Pisot
number and evaluate it at high powers. Only one detail was missing from our discussion; we have not
described a process for obtaining a non-trivial Pisot number to begin with, or mentioned anything on the
distribution of Pisot numbers. It turns out that the set of Pisot numbers, commonly referred to as S, has
been studied in great detail, and is very well understood. In this section, we will look at some properties of
the structure of this set.

The set S is countably infinite.

We saw earlier that every natural number larger than 1 is a Pisot number, and hence the set of Pisot
numbers must be infinite. On the other hand, S is a strict subset of the set of algebraic integers, which is
known to be countable, so S is also a countable set.
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The set S is closed.

Recall that a set is closed when it contains all of its limit points. The highly nontrivial fact that S is a
closed subset of R is due to a proof by Salem [Sal44],2 who clarified that the set of Pisot numbers is not
dense in R (for if S were dense, then every point in R would be either in S or a limit point of S).

The smallest element of S is known.

The set of Pisot numbers is unbounded from above, since every integer larger than 1 is an element of S.
However, it is bounded from below, since Pisot numbers are all strictly larger than 1. Since S is closed,
it must have a least element; Siegel [Sie44] proved that this smallest Pisot number is the positive root of
x3 − x− 1, which is approximately 1.32472.

The set S has infinitely many limit points.

It is known that the set of limit points of S has limit points of its own. In fact, more than that can be
said. Let us define the derived sets of S as a sequence of sets S(0), S(1), S(2), . . . such that S(0) = S, and for
n ≥ 1, S(n+1) is the set of limit points of S(n). Then it is known that S(n) is nonempty for any finite n.
The smallest element of S(2) is known to be 2; that is, 2 is a limit point of limit points of S [Ber80]. It was
determined by Bertin [Ber80], in fact, that n ∈ S(2n−2) for all n. A consequence of this is that there are a
huge amount of Pisot numbers clustered around the real line, particularly near the integers.

The subset S ∩ [1, 2] is completely understood.

Amara [Ama66] has given a complete characterization of the (infinitely many) limit points of the Pisot
numbers less than 2. Talmoudi [Tal78] gave the surprising result that for any of these limit points, there is
some small neighbourhood around the limit point such that all Pisot numbers in the neighbourhood can be
completely determined using highly structured sequences of polynomials.3

For example, the smallest limit point of the Pisot numbers is φ = (1+
√

5)/2, the root of f(x) = x2−x−1.
According to Talmoudi’s classification, any Pisot number sufficiently close to φ must be the root of the
a polynomial of the form f(x)xn + g(x), for some n ≥ 1 and g(x) ∈ {±1,±x,±(x2 − 1)}. Conversely,
any such polynomial will have a Pisot number as a root, for sufficiently large values of n (although the
polynomial may not be irreducible in general). Furthermore, as n grows arbitrarily large, the Pisot root
of this polynomial will approach the limit point φ. These special polynomials described by Amara and
Talmoudi give rise to what are called “regular Pisot numbers”; any Pisot number not fitting one of these
patterns is called “irregular”. The irregular Pisot numbers are much less common than the regular Pisot
numbers.

Pisot numbers can be found algorithmically.

Boyd [Boy78, Boy85, Boy84] has presented a remarkable algorithm that deterministically finds all Pisot
numbers within any interval [a, b] of the real line, and it is able to detect and compensate for any limit
points of S that may occur there. Boyd’s algorithm, which was developed over the course of three papers,
is particularly useful for finding the irregular Pisot numbers, and has marked a big achievement to further
the study of Pisot numbers and related areas. Due to this algorithm, along with the other facts known
about S, the set of Pisot numbers is very well understood, and Pisot numbers can be obtained very easily.

2Salem’s proof in 1944 that S is closed was a strong motivation to continue the study of Pisot numbers, and Pisot later
mentioned that he called the set S in order to honour Salem for this contribution.

3Although Amara and Talmoudi described their highly nontrivial classification of Pisot number sequences in French, the
main results have been summarized in various English papers, for example, by Hare [Har07] and Boyd [Boy96].
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4 Other Applications of Pisot Numbers

It turns out that Pisot numbers are useful for more than just generating almost integers. In fact, the Pisot
numbers have broad applications that arise in a variety of different areas of mathematics, making them a
rich class of objects to study. Some examples are as follows.

Salem numbers.

Closely related to the set of Pisot numbers is the set T of Salem numbers.4 A Salem number is an algebraic
integer whose Galois conjugates are all less than or equal to 1 in absolute value, but with at least one root
having an absolute value of exactly 1. Although the definition is very similar to that of Pisot numbers, the
set of Salem numbers is much less understood than S. It is known that T is not closed; a long standing
open conjecture is whether or not the set T has a least element. The currently known smallest element is
the root of a degree ten polynomial found by Lehmer [Leh33], but there is no proof that a smaller one does
not exist.5 Salem numbers exhibit a close relation with the Pisot numbers in that every Pisot number is a
limit point for a sequence of Salem numbers. However, whether these are the only limit points of T , like so
many other questions concerning Salem numbers, remains unknown [BP90, Boy77].

Mahler measure problems.

The Mahler measure of a polynomial is the product of all of the complex roots of the polynomial that
have absolute value larger than 1. The problem of finding polynomials of very small Mahler measure
has interested mathematicians for a long time, and continues to be an active area of study [Mos98]. In
particular, the Mahler measure of a minimal polynomial of a Pisot or Salem root α is always equal to α, so
in this case the problem reduces to finding small Pisot and Salem numbers. The smallest Pisot number is
known, as mentioned in Section 3; however, the smallest Salem number (if it exists) is not known, and the
study of Mahler measures has therefore motivated the search for the smallest element of T .

Beta expansions.

Rényi [Rén57] introduced the notion of beta expansions as a number representation system, where numbers
are written not using base 10, but base β where β may not necessarily be an integer. It was found that
surprising things happen when the base of representation is not a whole number; for example, expansions
are frequently not unique, and expansions of rational numbers may neither terminate nor repeat. In general,
the expansions are chaotic and unpredictable; however, when the base β is chosen to be a Pisot number,
then the expansions are much more well behaved. There has been a lot of study in identifying the patterns
that arise in these expansions when the base is chosen to be a Pisot number [Bas02, HT08, Pan11].

Fractal tilings, quasicrystals, and more.

Pisot numbers have many applications in dynamical systems, mainly due to the nonuniform distribution of
powers of Pisot numbers modulo one. The patterns in the beta expansions involving Pisot numbers can be
used to generate fractal tilings of the plane [AI01]. More recently, Pisot numbers have been used to study
the aperiodic tilings of quasicrystals [EF05].

4Although it was a nice gesture for Pisot to name his set of numbers S after Salem, this convention made notation
unnecessarily awkward when Salem introduced his own related class of numbers in 1945.

5To date, no Salem number smaller than 1.176. . . , the root of the polynomial x10 + x9 − x7 − x6 − x5 − x4 − x3 + x + 1, is
known. Despite extensive computer searches, the record still belongs to the polynomial Lehmer found using hand calculations
in 1933.



A Systematic Construction of Almost Integers 42

5 Conclusions

The main goal of this paper was to outline a quick and easy method for producing non-integer values that
were unusually close to whole numbers. In doing so, we were able to get a glimpse at the structure and
properties of the set of Pisot numbers. Although these numbers are useful for generating large quantities
of almost integers, we have seen that their study is rich and interesting in its own right, and that the
applications of Pisot numbers in mathematics are broad.

There are many unanswered questions related to Pisot numbers, particularly ones involving the related
set of Salem numbers. There is also a lot of room for extended study in the applications and properties of
these numbers.
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