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Abstract: A random n-lift Ln(G) of a base graph G is obtained by replacing each vertex vi of G by
a set Vi of n vertices, and generating a random matching between Vi and Vj for each edge (vi, vj) ∈ G.
We show that the spectral density of a random lift Ln(G) approaches that of a tree as we increase n by
showing that the expected number of short cycles of length k in Ln(G) (denoted Zk(G)) tends to a
constant λk. Moreover, we show that Zk(G) is Poisson distributed with parameter λk. We also give
experimental results of the level spacing distributions and compare them to the Gaussian Orthogonal
Ensemble of random matrix theory.

1 Introduction

A regular graph is a graph where each vertex has exactly the same degree, i.e. the same number of adjacent
vertices. For a d-regular graph G, let η1 ≥ η2 ≥ . . . ≥ ηn be the eigenvalues of the adjacency matrix
(defined in section 2). It can be easily shown that η1 = d and |ηi| ≤ d for the remaining eigenvalues. Let
ρ(G) = max(|η2|, |ηn|) be the second-largest eigenvalue of the graph G. Define the edge expansion constant
h(G) to be

h(G) = min
0≤|A|≤n/2

|∂A|
|A|

where A is any nonempty subset having at most n/2 vertices, and ∂A is the set of edges with exactly
one endpoint in A. The edge expansion comes from the theory of expander graphs, where one wishes to
construct an efficient network with a good connection property. Networks can be seen as vertices sharing
data via edges connecting them. The edge expansion constant measures how well connected is the network
by restricting the number of wires used in the network, but at the same time ensuring that any subset A is
well connected to its complement Ā. In the case G is a d-regular graph, the edge expansion constant is
related to ρ(G) by the following bounds derived by Dodziuk, Alon-Milman and Alon [Alo86,AM85,Dod84]:

d− ρ(G)

2
≤ h(G) ≤

√
2d(d− ρ(G))

The quantity d− ρ(G) is defined as the spectral gap of the graph G. If follows that the edge expansion of G
is particularly significant when ρ is small. Moreover, a theorem derived by Alon and Boppana [Alo86,Nil91]
states that ρ(G) ≥ 2

√
(d− 1)− on(1). In the optimal case where ρ(G) ≤ 2

√
d− 1, the graph G is said to be

Ramanujan. An open question is to prove the existence of infinite families of d-regular Ramanujan graphs
for all d ≥ 3 [ABG10], which would provide an infinite family of optimal expanders. The idea of random
lifts was introduced by Friedman [Fri03] in order to obtain new Ramanujan graphs from smaller ones
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(namely base graphs). Addario-Berry and Griffiths showed [ABG10] that with extremely high probability,
all eigenvalues of the random lift that are not eigenvalues of the base graph have order O(

√
d). This implies

that if the base graph is Ramanujan, then the random lift is with high probability nearly Ramanujan.
In the original paper introducing random lifts [ALMR01], a variety of properties of random lifts are

discussed: connectivity, expansion, independent sets, colouring and perfect matchings. In the present
article, we first study the asymptotic eigenvalue distribution of random n-lifts as n→∞. We show that it
follows the asymptotic law given in a paper by McKay [McK81]:

f(x) =

{
d
√

4(d−1)−x2

2π(d2−x2) for |x| ≤ 2
√
d− 1,

0 otherwise.
(1.1)

The main part of the proof is to show that the number of short cycles of a fixed length k (denoted Zk) tends
to a constant, denoted λk, which depends only on the base graph G. By following the method of moments
described by Janson, Luczak and Rucinsky [JLK00], we show precisely that Zk is Poisson distributed
according to the parameter λk.

The second part of our article is about the level spacing distribution of random lifts. First, define the
sequence of unfolded eigenvalues to be xi = {F (ηi)}, where F is the cumulative function associated with
the asymptotic density (1.1). Then the quantities si = xi+1 − xi are called the spacings of the graph G. By
following the work of Jakobson, Miller, Rivin and Rudnick [JMRR99], we give experimental results about
the level spacing distribution of random lifts, and we show that there is a good fit between the random lift
spacings and the Gaussian Orthogonal Ensemble (GOE) spacings. The GOE comes from the theory of
random matrices; it is claimed that eigenvalues of large random symmetric matrices model the fluctuations
of energy levels of chaotic dynamical systems [BGS84].

2 Short cycles in random lifts

2.1 Graphs and random lifts

We denote the set of vertices and the set of edges of graph G by V (G) and E(G) respectively. By definition,
two vertices v1 and v2 are adjacent (or neighbors) if they are connected by an edge e ∈ E(G) and the
degree of a vertex v, denoted deg(v), is the number of edges adjacent to v. For the rest of the paper, we
consider only simple graphs G such that all vertices have a fixed degree d. We call such graphs d-regular
simple graphs. Note that simple graphs are graphs that contain no loops or parallel edges. An important
tool in the study of graphs is the adjacency matrix A(G) which is an n× n matrix, with n = |V (G)|, where
aij is the number of edges from vi to vj . In the case of simple d-regular graphs, all diagonal entries of A
are zero and the remaining entries are either 0 or 1. Moreover, the sum of the entries of each row and each
column is equal to d.

We define a k-cycle to be a connected 2-regular subgraph whose edges and vertices are only traversed
once, therefore containing k vertices and k edges. A closed walk of length k is defined as a sequence of
adjacent vertices {v1, v2, . . . , vk+1} so that the first and last vertices are the same, i.e v1 = vk+1. A closed
non-backtracking walk is defined as a closed walk such that for any vertex vi ∈ {v3, . . . , vk+1}, we have
vi 6= vi=2. Conversely, a closed backtracking walk is a closed walk such that vi = vi−2 for at least one
i ∈ {2, . . . k + 1}.

A random n-lift Ln(G) of a graph G is obtained by replacing each vertex vi of G by a set Vi of n
vertices (called the fibre of vi), and placing a random matching between Vi and Vj for each edge (vi, vj) ∈ G.
We call G the base graph of the lift.
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2.2 Short cycles in random lifts

Let Ln(G) be a random n-lift of the d-regular graph G. Define Zk as the number of cycles of length k in
Ln(G) for k ≥ 3. Define ck as the number of closed non-backtracking walks of length k in G. We first show
that the expected number of k-cycles for a fixed k approaches a constant which depends only on the base
graph as n→∞:

Lemma 2.1. E(Zk)→ ck
2k as n→∞.

Proof. Let pk be the probability that a subset of k edges occurs in the lift Ln(G). We will show that
pk ∼ 1

nk
as n→∞, i.e. limn→∞

pk
1/nk

= 1. Let Γk be the subgraph formed by the k edges and let π(Γk) be

the projection of Γk on the base graph G. For an edge e ∈ π(Γk), let m(e) be the number of edges in Γk
projected on e. We call m(e) the multiplicity of the edge e. Let si be the number of edges e ∈ π(Γk) such
that m(e) ≥ i and let r be the greatest multiplicity of an edge in π(Γk). Then we have

sr = k −
r−1∑
i=1

si

For an edge e ∈ π(Γk) with multiplicity m, we have m corresponding edges in the subgraph Γk within the
same fibre. This set of edges occurs with probability 1

n
1

n−1 . . .
1

n−(m−1) . It follows that

pk =

r∏
i=1

(
1

n+ 1− i

)si
=

(r−1∏
i=1

(
1

n+ 1− i

)si)( 1

n+ 1− r

)k−∑r−1
i=1 si

=

(r−1∏
i=1

(
n+ 1− r
n+ 1− i

)si)( 1

n+ 1− r

)k
∼ 1

nk
as n→∞

Let wk be a cycle of length k in Ln(G). The projection π(wk) ∈ G must be a closed non-backtracking
walk in the base graph G. Fix a closed non-backtracking walk w′k ∈ G. Let a(w′k) be the number of possible

cycles wk ∈ LG(n) where π(wk) = w′k. We will show that a(w′k) ∼ nk

2k as n→∞.
Let ti be the number of vertices which appear at least i times in w′k, for i = 1, 2, . . . , l where l is the

maximal occurrence of a vertex in w′k. We have

tl = k −
l−1∑
i=1

ti

To count the number of possible cycles wk ∈ LG(n), we count how many ways we can choose the vertices
in wk such that their projections are the vertices of w′k. For a vertex uj which appears for the first time in
the walk, we have n choices for choosing a vertex of wk in the fibre Vuj . When a vertex uj appears for its
i-time, we have (n− i+ 1) choices in Vuj since (i− 1) vertices have already been chosen in this fibre. Since
there are 2k possible ways to start the process, we have
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2ka(w′k) =

l∏
i=1

(n+ 1− i)ti

=

(l−1∏
i=1

(n+ 1− i)ti
)

(n+ 1− l)k−
∑l−1
i=1 ti

=

(l−1∏
i=1

(
n+ 1− i
n+ 1− l

)ti)
(n+ 1− l)k

∼ nk as n→∞

It follows that

E(Zk) =
∑
w′k

a(w′k)pk

∼
∑
w′k

nk

2k

1

nk
as n→∞

=
ck
2k

which proves the lemma.

Following the same idea for a general subgraph H of Ln(G), one has the following lemma:

Lemma 2.2. Let H be a subgraph of Ln(G) with v vertices and e edges. Then the expected number of such
subgraphs in Ln(G) is O(nv−e). In the case e > v, we have E(H) = O

(
1
n

)
.

Proof. The idea is similar to that of the proof of Lemma 1. We have already shown that the probability
that a subset of e edges occurs in the random lift is pe ∼ n−e. Moreover, as n increases, the number of
possible vertices that can be chosen among a fibre, for a fixed vertex of the projection π(H) on G, is of
order n, i.e. a(π(H)) = O(nv) for any subgraph H containing v vertices. One concludes by noticing that
taking the sum over the finite number of subgraphs H ′ such that π(H) = H ′ does not affect the result for
the asymptotic result, i.e. ∑

H′∈G:π(H′)=H

1

ne
O(nv) = O(nv−e)

Janson, Luczak and Rucinsky showed in [JLK00] that for random regular graphs, the number of cycles
of length k is distributed according to a Poisson distribution with parameter θk = 1

2k (d− 1)k. They used
the method of moments in the case of Poisson distributions and used specifically the following theorem:

Theorem 2.1 (Theorem 6.10 of [JLK00]). Let (X
(1)
n , . . . , X

(m)
n ) be vectors of non-negative and bounded

random variables, where m ≥ 1 is fixed. If λ1, . . . , λm ≥ 0 are such that, as n→∞,

E((X(1)
n )k1 . . . (X

(m)
n )km)→ λk11 . . . λkmm

for every k1, . . . , km ≥ 0, where E(X)i denotes the i-th factorial moment ofX, then (X
(1)
n , . . . , X

(m)
n )→d

(Z1, . . . , Zm), where Zi ∈ Po(λi) are independent Poisson variables.
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We will show a similar result for random n-lifts:

Theorem 2.2. Let λk := ck
2k , where ck is the number of closed non-backtracking walks in the base graph G,

and let Zk∞ ∈ Poisson(λk) be independent Poisson distributed random variables, k = 1, 2, 3, . . . Then
the random variables Zk(Ln(G)) converge in distribution to Zk∞, i.e. Zk(Ln(G))→d Zk∞ as n→∞,
jointly for all k.

Proof. We need to compute the factorial moments E(Zk)i for all i ≥ 2. We begin with E(Zk)2. By definition
E(Zk)2 = E(Zk(Zk − 1)), i.e. E(Zk)2 is the expected number of pairs of two distinct cycles of length k. We
write E(Zk)2 = Y ′ + Y ′′ where Y ′ is the number of pairs of vertex disjoint cycles and Y ′′ is the number
of pairs of two cycles with at least one common vertex. We can decompose Y ′′ further according to the
number of common vertices and to the number of total edges in the pair. Then Y ′′ =

∑J
j=1 Y

′′
j where J

depends only on k. Since the Y ′′j count the number of some subgraphs which have more edges than vertices,

we have E(Y ′′j ) = O
(
1
n

)
for all j by Lemma 2. It follows that E(Y ′′) = O

(
1
n

)
since J does not depend on

n. It remains to show that E(Y ′)→ λ2k. We proceed in a similar way as we did for E(Zk) in Lemma 1:

We have p2k ∼ 1
n2k . Let wkk = w

(1)
k tw

(2)
k be a pair of two disjoint k-cycles in Ln(G). The projected walks

π(w
(1)
k ) and π(w

(2)
k ) are two closed non-backtracking k-walks in G which may intersect or not. Moreover,

it is possible that π(w
(1)
k ) = π(w

(2)
k ). Let w′kk = π(w

(1)
k ) t π(w

(2)
k ). For any w′kk ∈ G, let d(w′kk) be the

number of pairs of two disjoint k-cycles wkk ∈ Ln(G) such that w′kk = π(wkk). As n → ∞, we have

d(w′kk) ∼
(
nk

2k

)2
. Summing over all possible pairs w′kk ∈ G, we get

∑
w′kk

d(w′kk) ∼
(
ckn

k

2k

)2
. If follows that

E(Y ′) ∼ (λk)2 and E(Zk)2 ∼ (λk)2. The same argument applies on any factorial moment E(Zk)i and for
any combination E((Zk)k1 . . . (Zk)km). By Theorem 1, the proof is complete.

To illustrate this result, we give as an example the simple case where G = Kd+1, the complete d-regular
graph on (d+ 1) vertices.

To count the number of non-backtracking walks of length k, we use the following idea. First, we choose
the first vertex of the walk, which gives d+ 1 possibilities. For the second vertex, we have d possibilities.
For the third vertex, since backtracking is not allowed, we are left with only (d− 1) possibilities. In general,
for the i-th vertex, with 2 ≤ i ≤ k − 2, we have (d − 1) possibilities as well. For i = k − 1, we cannot
choose the initial vertex of the walk neither, since this would imply backtracking at the end of the walk; we
therefore have (d− 3) choices for the (k − 1)-th vertex. It follows that

λk =
ck
2k

=
(d+ 1)d(d− 1)k−3(d− 3)

2k

Let A be the adjacency matrix of the graph Ln(G). It is easy to see that tr(Ak) gives the total number
of closed walks of length k in the graph Ln(G). We will analyze the case k = 4. To compute Z4(Ln(G))
from the adjacency matrix, we need a relation between Z4(Ln(G)) and tr(A4). To do so, we need to
subtract from tr(A4) the number of closed walks which are not cycles. Fix a vertex v ∈ Ln(G). There are
two types of backtracking closed walks of length 4, presented in Figure 1.

For the first type, there are d2 such walks since there are d ways of choosing v1 and d ways of choosing
v2. For the second type, there are d(d− 1) such walks. Since there are (d+ 1)n vertices in Ln(G), we have
the following relation:

Z4 =
tr(A4)− nd(d+ 1)(2d− 1)

8
We divided the right-hand side by 8 since every walk of length 4 is being counted exactly 8 times: 4

ways to fix a vertex and 2 ways to traverse the cycle. We computed Z4 for 500 random lifts of the complete
graph K9 with n = 200 and compared the empirical distribution with the asymptotic Poisson distribution
of Z4. By using the formula above, we get λ4 to be 378 (9× 7× 6). By looking at the density of the Poisson
distribution with λ = 378 against the empirical distribution (see Figure 2), we observe that the expected
behavior of Z4 for large n is a very good fit for n as small as 200.
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Figure 2.1: Backtracking closed walks of length 4 starting at the vertex v. Numbers represent the steps of
the walk.

Figure 2.2: Number of 4-cycles for 500 n-lifts of the complete graph K9 with n = 200 vs. the theoretical
Poisson distribution of Z4.
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3 Asymptotic eigenvalue distribution of random lifts

We will study here the eigenvalues of Ln(G) where G is a d-regular graph and when n→∞. We notice
first that the eigenvalues of the base graph G are all inherited by Ln(G). To see this, let η be an eigenvalue
of A(G) with eigenvector x. Define the vector y in the following way: yv = xi if v ∈ Vi and where Vi is the
fibre of the vertex ui ∈ G. Then y is an eigenvector or Ln(G) with eigenvalue η. In McKay [McK81], the
following theorem is proved:

Theorem 3.1. Let X1, X2, . . . be a sequence of regular graphs, each of degree v ≥ 2, which satisfies the
conditions

• n(Xi)→∞ as i→∞ where n(Xi) is the number of vertices of the graph Xi

• for each k ≥ 3, Zk(Xi)n(Xi)
→ 0 as i→∞

Let f(Xi, x) be the density distribution of the eigenvalues of A(Xi). Then for each x, f(Xi, x)→ f(x)
as i→∞, where f(x) is the function defined as follows:

f(x) =

{
d
√

4(d−1)−x2

2π(d2−x2) for |x| ≤ 2
√
d− 1,

0 otherwise.
(3.1)

We refer to f(x) as McKay’s law. Since we proved previously that E(Zk)→ λk(G) as n→∞, we have

E
(

Zk
|Ln(G)|

)
∼ λk(G)

nd
→ 0 as n→∞,

which shows that the second condition of the theorem is satisfied. We conclude that the asymptotic
eigenvalue distribution of random lifts follows McKay’s law.

4 Experimental results

We computed the empirical eigenvalue distributions of two ensembles of graphs obtained by lifting two
different base graphs: the first is a ensemble of 200-lifts of the complete graph K5 (see Figure 3A) and the
second is a ensemble of 200-lifts of a random generated 3-regular graph with 6 vertices (see Figure 3B).
In both figures, the empirical distributions are compared to McKay’s law. The reader has to notice that
we did not include the old eigenvalues of the lifts (the eigenvalues inherited from the base graph) in the
distributions.

In [JMRR99], it is conjectured that the level spacing distribution of random regular graphs is similar to
that of the Gaussian Orthogonal Ensemble (GOE), which is a statistical model in Random Matrix Theory.
The empirical level spacing distribution is obtained in the following way: We first unfold the spectrum by
setting

xj = F (ηj)

where F (x) is the cumulative distribution function associated to McKay’s law. Then the sequence of
numbers {xj} has unity as mean spacing. We consider the spacings sn = xn+1 − xn. The distribution
function of the sn is called the level spacing distribution. For the GOE, an approximation derived by
Wigner is known for the level spacing distribution (called Wigner surmise):

PW (s) =
π

2
se
−πs2

4

We computed the level spacing distribution of our previous graphs and we plotted the results in comparison
to the Wigner surmise (Figure 4). The results show a good fit and lead us to think that the eigenvalues of
random lifts have GOE spacings.



8 The Waterloo Mathematics Review

Figure 4.1: A) Eigenvalue distribution of 200-lifts of the complete graph K5 vs McKay’s law B) Eigenvalue
distribution of 200-lifts of a random 3-regular graph on 6 vertices vs McKay’s law

Figure 4.2: Level spacing distribution of 100-lifts of a random 3-regular graph on 6 vertices vs GOE Wigner
surmise
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5 Random lift generation

For the experiments, we used three different base graphs: complete graphs Kd+1, complete bipartite graphs
Kd,d and random d-regular graphs. For generating random d-regular graphs, we used the configuration
model (Bollobas) described in [JLK00]. Briefly, an 2d-configuration of a graph G is a partition of the
cartesian product W = {1, . . . , |G|} × {1, . . . 2d} into dn pairs, where |G| = n is the number of vertices of
the graph G. The natural projection of the configuration W onto G creates a d-regular graph G′.

Now, to construct a random n-lift H from a base graph G, construct first the nv × nv matrix A which
represents the adjacency matrix of H, where v = |V (G)|. The v first columns (or rows) represent the
vertices of the first copy of G. The next v columns represent the vertices of the second copy of G, and so
on. For each edge (i, j) ∈ G, we construct an array X of size n. For the k-th entry of X, we generate a
random number Rand(k) between 0 and m where m is much larger than n. We sort the array X in such a
way that we keep track of the original indices. Denote the new index of Rand(k) by π(k). The associations
k to π(k) create a perfect matching between the fibres Vi and Vj . For each pair (k, π(k)), we set

A(i+kn,j+π(k)n) = 1 and A(j+π(k)n,i+kn) = 1
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