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Remarks

From the Editors

Dear Reader,

This issue marks the first issue of the Waterloo Mathematics Review without major involvement from,
our now editor emeritus, Edgar Bering. This issue represents a transition period in the editorship and, as
such, the production of Volume II Issue II has been a little delayed. We are also excited to have Saifuddin
Syed join as an editor.

In this issue, we have authors from all over Canada, including schools such as the University of
Waterloo, University of Ottawa and University of British Columbia covering a breadth of topics such as
Statistical Learning Theory, Number Theory and Applied Mathematics.

Overall, we have been very excited with the quality of the submitted articles from authors all over
Canada as well as the hard work of the reviewers from the University of Waterloo. We have grown
considerably since first launching the Waterloo Mathematics Review and we hope to keep expanding
the reach and distribution of the journal even further. Our goal is to continue to produce the Waterloo
Mathematics Review in the foreseeable future and to continue to uphold the strong precedent set by Volume I.

Regards,
Frank Ban

Saifuddin Syed
Eeshan Wagh

Editors
editor@mathreview.uwaterloo.ca

From the CUMC

The Canadian Undergraduate Mathematics Conference (CUMC) is Canada’s premier conference showcasing
undergraduate research in mathematics related fields. From its beginning at McGill University in 1994, the
CUMC has grown over the last 19 years to be one of Canada’s largest undergraduate conferences. The
conference aims to give students a valuable experience in mathematics, beyond what is available in the
usual academic setting. During the conference, students can spend up to five days with other students who
share a passion for mathematics. They have the valuable opportunity to give mathematical talks to an
audience of their peers. In turn, students will also be exposed to ideas from areas of mathematics outside
of their expertise; the conference features students with interests in, but not limited to, computer science,
economics, physics, statistics, pure mathematics, and applied mathematics.

Students are invited to give a talk, but are welcome to simply attend and learn from others. As well,
students who are not involved in research are invited to talk about anything they are passionate about
in mathematics. Students may choose to talk about a particular aspect of mathematics that they find
interesting such as: a proof they enjoy working through, a historical aspect of the evolution of mathematics,
or any other mathematics topic they wish to share. Students will encounter many new topics from these
presentations, and will have the opportunity to both give and receive feedback from their peers throughout
the conference. The CUMC is a non-competitive forum for building connections between students of all
levels and backgrounds and aims for diversity in its presenters. In fact, the three core principles of the
conference are bilingualism, non-competitiveness, and regional diversity.

The conference also features renowned keynote speakers from a variety of disciplines. The keynote
speakers who are invited to the CUMC are either prominent research figures or rising stars in their fields,
and most importantly are people who care about undergraduate students and their exposure to mathematics.
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This year we are proud to welcome Dr. Heinz Bauschke (UBC Okanagan), Dr. Catherine Beauchemin
(Ryerson University), Dr. Gerda de Vries (University of Alberta), Dr. Donovan Hare (UBC Okanagan), Dr.
Jennifer Hyndman (UNBC), Dr. Dominikus Noll (Université Paul Sabatier), and Dr. Tim Swartz (SFU).

In addition to exposing students to other researchers in mathematics, the CUMC gives undergraduate
students a chance to visit a different Canadian mathematics department at the hosting university. The
CUMC could not continue without its host schools, and for this reason it is an important tradition that
the students attending the conference decide which Canadian university will hold the next conference. We
strongly encourage students to consider making a bid to host CUMC 2013 at their school. Student groups
interested in organizing the conference must first obtain their University’s permission and then make a
presentation to students at the CUMC meeting.

This is the largest conference of its kind in North America, and we hope that you will get involved
and join others from across the country. All attending students will leave with new experiences, new
understanding, new ideas, and a new passion for mathematics!

For further information on the conference, please visit our website at cumc.math.ca or contact us with
any questions at cumc.2012@ubc.ca.
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Bounding the Fat Shattering Dimension

of a

Composition Function Class

Built Using a Continuous Logic Connective

Hubert Haoyang Duan
University of Ottawa

hduan065@uottawa.ca

Abstract: The paper deals with an important combinatorial parameter of a function class, the Fat
Shattering dimension. An important known result in statistical learning theory is that a function class
is distribution-free Probably Approximately Correct learnable if it has finite Fat Shattering dimension
on every scale.

As the main new result, we explore the construction of a new function class from a collection
of existing ones, obtained by forming compositions with a continuous logic connective (a uniformly
continuous function from the unit hypercube to the unit interval). Vidyasagar had proved that such a
composition function class has finite Fat Shattering dimension of all scales if the classes in the original
collection do; however, no estimates of the dimension were known. Using results by Mendelson-Vershynin
and Talagrand, we bound the Fat Shattering dimension of scale ε of this new function class in terms of
a sum of the Fat Shattering dimensions of the collection’s classes.

1 Introduction

In the area of statistical learning theory, the Probably Approximately Correct (PAC) learning model
formalizes the notion of learning by using sample data points to produce valid hypotheses through
algorithms.

Our main new result provides an upper bound on the Fat Shattering dimension of a function class, which
consists of functions from a domain X to the unit interval [0, 1], built using a continuous logic connective.
An introduction to PAC learning is included in the paper to provide all the necessary prerequisites for
stating our result. Hence, we first introduce the PAC learning model applied to learning a concept class C, a
collection of subsets of X, and more generally, a function class F . We also explain the Vapnik-Chervonenkis
and the Fat Shattering dimensions and cover some known results relating learning under this model to
these dimensions.

This paper involves mostly concepts from analysis and some concepts from probability theory; the
reader is recommended to have a good understanding of basic notions in measure theory.

Outline of Paper

Section 2 provides a brief overview of measure theory and analysis. In Section 3, we give two definitions of
PAC learning, one for a concept class C and the other for a function class F . Then, in Sections 4 and 5, we
explore two combinatorial parameters, the Vapnik-Chervonenkis (VC) dimension and the Fat Shattering
dimension of scale ε, for C and F , respectively. We also discuss how these dimensions relate to the PAC
learnability of concept and function classes.

In Section 6, as the main original result of our research, given function classes F1, . . . ,Fk and a
“continuous logic connective” (that is, a continuous function u : [0, 1]

k → [0, 1]), we consider the construction
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of a new composition function class u(F1, . . . ,Fk), consisting of functions u(f1, . . . , fk) defined by

u(f1, . . . , fk)(x) = u(f1(x), . . . , fk(x))

for fi ∈ Fi. We then bound the Fat Shattering dimension of scale ε of this class in terms of a sum of the
Fat Shattering dimensions of scale δ(ε, k) of F1, . . . ,Fk, where δ(ε, k) only depends on ε and k. There is a
previously known analogous estimate for a composition of concept classes built using a usual connective of
classical logic [Vid97]. We deduce our new bound using results from Mendelson-Vershynin and Talagrand.

In this paper, any propositions or examples given with proofs, unless mentioned otherwise, are done
by us and are independent of any sources.

2 Brief Overview of Measure Theory and Analysis

This section lists some definitions and results in measure theory and analysis, found in standard textbooks,
such as [Doo94], [Vid97], and [AC05], which are used in this paper.

Probability Spaces

A measurable space (X,S) is a set X equipped with a σ-algebra S, a non-empty collection of subsets of
X closed under complements and countable unions. If (X,S) and (Y, T ) are two measurable spaces, a
function f : X → Y is called measurable if f−1(T ) ∈ S for all T ∈ T .

Suppose (X,S) is a measurable space; a measure is a function µ : S → R+ = {r ∈ R : r ≥ 0} satisfying
µ(∅) = 0 and

µ

(⋃

i∈N
Ai

)
=
∑

i∈N
µ(Ai),

for every collection {Ai ∈ S : i ∈ N} of pairwise disjoint sets. The triple (X,S, µ) is called a measure space.
If in addition, µ satisfies µ(X) = 1, then µ is a probability measure and (X,S, µ) is called a probability
space.

Given a probability space (X,S, µ), one can measure the difference between two subsets A,B ∈ S of X
by looking at their symmetric difference A4B = (A∪B) \ (A∩B). More generally, given two measurable
functions f, g : X → [0, 1], one can look at the expected value of their absolute difference by integrating
with respect to µ: ∫

X

|f(x)− g(x)| dµ(x).

This paper does not go into any details involving the Lebesgue integral nor does it discuss any integrability
or measurability issues; we assume that integration of measurable functions to the real numbers, which is a
measure space, makes sense and is linear and order-preserving.

Validating hypotheses in the PAC learning model uses the idea of measuring the symmetric difference
of two subsets of a probability space (X,S, µ) and calculating the expected value of the difference of
f, g : X → [0, 1]. The structure of metric spaces arises naturally from these two notions.

Metric Spaces

A metric space (M,d) is a set M equipped with a metric d : M ×M → R+, which is symmetric and satisfies
the triangle inequality and the condition that d(m1,m2) = 0 if and only if m1 = m2. Given a metric space
(M,d), a metric sub-space of M (which is a metric space in its own right) is a nonempty subset M ′ ⊆M
equipped with the distance d|M′ , the restriction of d to M ′.

A normed vector space (V, ρ) is a vector space V over R equipped with a norm ρ : V → R+ satisfying
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1. ρ(v1) = 0 if and only if v1 = 0

2. ρ(rv1) = |r|ρ(v1)

3. ρ(v1 + v2) ≤ ρ(v1) + ρ(v2)

for all v1, v2 ∈ V and r ∈ R. The structure of a metric space exists in every normed vector space since the
function d : V × V → R+ defined by d(u, v) = ρ(u− v) is always a metric on V . In this case, d is called the
metric induced by the norm ρ on V .

The following subsection provides a few examples of metric spaces which will be encountered in this
paper.

Examples of Metric Spaces

The real numbers (R, ρ), with the absolute value norm ρ(r) = |r| for r ∈ R, is a normed vector space so R
can be equipped with the metric d(r, r′) = ρ(r− r′) = |r− r′|. The unit interval [0, 1] is a subset of R, so it
is a metric sub-space of (R, d).

In addition, given a probability space (X,S, µ), the set V of all bounded measurable functions from
X to R is a vector space, with point-wise addition and scalar multiplication. The function ρ : V → R+

defined by

ρ(f) =

√(∫

X

(f(x))2dµ(x)

)

is a norm on V if any two functions f, g : X → R which agree on a subset of X with full measure,
µ({x ∈ X : f(x) = g(x)}) = 1, are identified via an equivalence relation. The norm ρ is called the L2(µ)
norm on V and we normally write ||f ||2 = ρ(f) for f ∈ V . As a result, V can be turned into a metric space.

Example 2.1. Following the notations in the paragraph above, V is a metric space with distance d defined
by

d(f, g) = ||f − g||2 =

√(∫

X

(f(x)− g(x))2dµ(x)

)
.

Write [0, 1]
X

for the set of all measurable functions from a probability space (X,S, µ) to [0, 1]. Then,

it is a metric sub-space of V with distance induced by the L2(µ) norm on V , restricted of course to [0, 1]
X

.
Given metric spaces (M1, d1), . . . , (Mk, dk), their product M1 × . . .×Mk always has a natural metric

structure, defined as follows.

Example 2.2. If (M1, d1), . . . , (Mk, dk) are metric spaces, then their product M1 × . . . ×Mk is a metric
space with distance d2 defined by

d2((m1, . . . ,mk), (m′1, . . . ,m
′
k)) =

√
((d1(m1,m′1))2 + . . .+ (dk(mk,m′k))2).

The distance d2 is normally referred to as the L2 product distance on M1 × . . .×Mk.

Consequently, the set [0, 1]
k
, which denotes the set-theoretic product [0, 1] × . . . × [0, 1], is then a

metric space with the L2 product distance. Also, following Examples 2.1 and 2.2, if F1, . . . ,Fk are sets
of measurable functions from a probability space (X,S, µ) to the unit interval, then Fi ⊆ [0, 1]

X
for each

i = 1, . . . , k. Therefore, the product F1 × . . .×Fk is a metric space with the L2 distance as well.

3 The Probably Approximately Correct Model

Let (X,S) be a measurable space. A concept class C on X is a subset of S, and an element A ∈ C, which is a
measurable subset of X, is called a concept. A function class F is a collection of measurable functions from
X to the unit interval [0, 1]. Unless stated otherwise, from this section onwards, the following notations
will be used:
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1. X = (X,S): a measurable space

2. µ: a probability measure S → R+

3. C: a concept class and F : a function class

This section provides the definitions of learning C and F in the Probably Approximately Correct (PAC)
learning model, introduced in 1984 by Valiant.

Concept class PAC learning involves producing a valid hypothesis for every concept A ∈ C by first
drawing random points, forming a training sample, from X labeled with whether these points are contained
in A. In other words, a labeled sample of m points x1, . . . , xm ∈ X for A consists of these points and the
evaluations χA(x1), . . . , χA(xm) of the indicator function χA : X → {0, 1}, where

χA(x) = 1 if and only if x ∈ A.

The set of all labeled samples of m points can then be identified with (X × {0, 1})m, and producing a
hypothesis for A with a labeled sample is exactly the process of associating the sample to a concept H ∈ C
(i.e. this process is a function from the set of all labeled samples to the concept class).

Here is the precise definition of a concept class being learnable.

Definition 3.1 ( [Val84]). A concept class C is distribution-free Probably Approximately Correct learnable if
there exists a function (a learning algorithm) L : ∪m∈N(X × {0, 1})m → C with the following property:
for every ε > 0, for every δ > 0, there exists a M ∈ N such that for every A ∈ C, for every probability
measure µ, for every m ≥ M , for any x1, . . . , xm ∈ X, we have µ(Hm 4 A) < ε with confidence at
least 1− δ, where Hm = L((x1, χA(x1)), . . . , (xm, χA(xm))).

Confidence of at least 1 − δ in the definition above, keeping to the same notations, simply means
that the (product) measure of the set of all m-tuples (x1, . . . , xm) ∈ Xm, where µ(Hm 4 A) < ε for
Hm = L((x1, χA(x1)), . . . , (xm, χA(xm))), is at least 1− δ. An equivalent statement to C being distribution-
free PAC learnable is that for every ε, δ > 0, there exists M ∈ N such that for every A ∈ C, probability
measure µ, and m ≥M ,

µm({(x1, . . . , xm) ∈ Xm : µ(Hm 4A) ≥ ε}) ≤ δ,

for Hm = L((x1, χA(x1)), . . . , (xm, χA(xm))). (The symbol µm denotes the product measure on Xm; the
reader can refer to [Doo94] for the details.)

A concept class C is distribution-free learnable in the PAC learning model if a hypothesis H can always
be constructed from an algorithm L for every concept A ∈ C, using any labeled sample for A, such that the
measure of their symmetric difference H 4A is arbitrarily small with respect to every probability measure
and with arbitrarily high confidence, as long as the sample size is large enough.

Every concept A ∈ C is a subset of X and can be associated to its indicator function χA : X → {0, 1}.
Even more generally, χA is a function from X to [0, 1]; in other words, every concept class C can be
identified as a function class FC = {χA : X → [0, 1] : A ∈ C}, so it is natural to generalize Definition 3.1 for
any function class F .

Definition 3.1 involves the symmetric difference of two concepts and its generalization to measurable
functions f, g : X → [0, 1] is the expected value of their absolute difference Eµ(f, g), as seen in the previous
section:

Eµ(f, g) =

∫

X

|f(x)− g(x)| dµ(x).

A simple exercise can show that if f, g ∈ [0, 1]
X

are indicator functions of two concepts A,B ⊆ X, then
Eµ(f, g) coincides with the measure of their symmetric difference: Eµ(f, g) = µ(A4B), where f = χA and
g = χB .

With this generalization of the symmetric difference, distribution-free PAC learning for any function
class can be defined. In the context of function class learning, a labeled sample of m points x1, . . . , xm ∈ X
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Figure 3.1: Learning an axis-aligned rectangle.

for a function f ∈ F consists of these points and the evaluations f(x1), . . . , f(xm). Then, the set of all
labeled samples of m points can be identified with (X × [0, 1])m, and producing a hypothesis is the process
of associating a labeled sample to a function H ∈ F (just as in concept class learning).

Definition 3.2 ( [Vid97]). A function class F is distribution-free Probably Approximately Correct learnable if
there exists a function (a learning algorithm) L : ∪m∈N(X × [0, 1])m → F with the following property:
for every ε > 0, for every δ > 0, there exists a M ∈ N such that for every f ∈ F , for every probability
measure µ, for every m ≥M , for any x1, . . . , xm ∈ X, we have Eµ(Hm, f) < ε with confidence at least
1− δ, where Hm = L((x1, f(x1)), . . . , (xm, f(xm))).

Both definitions of PAC learning contain the ε and δ parameters. The accuracy error ε is used because
the hypothesis cannot be, in general, expected to have zero error - only an arbitrarily small error. The risk
parameter δ exists because there is no guarantee that any collection of sufficiently large training points
leads to a valid hypothesis; the learning algorithm is only expected to produce a valid hypothesis with the
sample points with confidence at least 1− δ. Hence, the name “Probably (δ) Approximately (ε) Correct” is
used [KV94].

The following example illustrates that the set of all axis-aligned rectangles in R2 is distribution-free
PAC learnable. Both the statement and its proof can be found in Chapter 3 of [Vid97] and Chapter 1
of [KV94].

Example 3.1. In X = R2, the concept class C = {[a, b] × [c, d] : a, b, c, d ∈ R} is distribution-free PAC
learnable.

Proof. Let ε, δ > 0. Given a concept A and any sample of m training points x1, . . . , xm ∈ X, define the
hypothesis concept Hm to be the intersection of all rectangles containing only training points xi such that
χA(xi) = 1. In other words, Hm is the smallest rectangle that contains only the sample points in A.

Let µ be any probability measure, and in fact, Hm 4 A = A \Hm, which can be broken down into
four sections T1, . . . , T4. If we can conclude that

µ

(
4⋃

i=1

Ti

)
< ε,

with confidence at least 1− δ, then the proof is complete.
Consider the top section T1 and define T̃1 to be the rectangle along the top parts of A whose measure

is exactly ε/4. The event T̃1 ⊆ T1, which is equivalent to µ(T1) ≥ ε/4, holds exactly when no points in the
sample x1, . . . , xm fall in T̃1, and the probability of this event (which is the measure of all such m-tuples
of (x1, . . . , xm) ∈ Xm where xi /∈ T̃1 for all i = 1, . . . ,m) is (1 − ε/4)m. Similarly, the same holds for
the other three sections T2, . . . , T4. Therefore, the probability that there exists at least one Ti such that
µ(Ti) ≥ ε/4, where i ∈ {1, . . . , 4}, is at most 4(1− ε/4)m. Hence, as long as we pick m large enough that
4(1− ε/4)m ≤ δ, with confidence (probability) at least 1− δ, µ(Ti) < ε/4 for every i = 1, . . . , 4 and thus,

µ(Hm 4A) = µ

(
4⋃

i=1

Ti

)
≤ µ(T1) + . . .+ µ(T4) < 4

( ε
4

)
= ε.
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Please note that this argument, though very intuitive, actually requires the classical Glivenko-Cantelli
theorem, see e.g. [Bil95]. Figure 3.1 provides a visual illustration of the rectangles.

In summary, as long as m ≥ (4/ε) ln(4/δ), with confidence at least 1− δ, µ(Hm4A) < ε. We note that
this estimate of the sample size only depends on ε and δ, so C is indeed distribution-free PAC learnable.

In the next section, a fundamental theorem which characterizes concept class distribution-free PAC
learning will be stated. However, in order to state this theorem, the notion of shattering, which is essential
in learning theory, must be introduced.

4 The Vapnik-Chervonenkis Dimension

The Vapnik-Chervonenkis dimension is a combinatorial parameter which is defined using the notion of
shattering, developed first in 1971 by Vapnik and Chervonenkis.

Definition 4.1 ( [VC71]). Given any set X and a collection A of subsets of X, the collection A shatters a
finite subset S ⊆ X if for every B ⊆ S, there exists A ∈ A such that A ∩ S = B.

There is an equivalent condition, which is sometimes easier to work with, to shattering, expressed in
terms of characteristic functions of subsets of X.

Proposition 4.1. The collection A shatters a subset S = {x1, . . . , xn} ⊆ X if and only if for every
e = (e1, . . . , en) ∈ {0, 1}n, there exists A ∈ A such that χA(xi) = ei, for all i = 1, . . . , n.

Definition 4.2 ( [VC71]). The Vapnik-Chervonenkis (VC) dimension of the collection A, denoted by VC(A),
is defined to be the cardinality of the largest finite subset S ⊆ X shattered by A. If A shatters
arbitrarily large finite subsets of X, then the VC dimension of A is defined to be ∞.

The VC dimension is defined for every collection A of subsets of any set X, so in particular, X = (X,S)
can be a measurable space and A = C can be a concept class.

The following is an example, which we believe to be original, illustrating the calculation of the VC
dimension for a concept class in the context of X = Rn. In order to prove the VC dimension of a concept
class C is d, we must provide a subset S ⊆ X with cardinality d which is shattered by C and prove that no
subset with cardinality d+ 1 can be shattered by C. The reader can refer to [KV94] and [Pes10b] for more
examples on calculating VC dimensions.

Example 4.1. Consider the space X = Rn. A hyperplane H~a,b is defined by a nonzero vector ~a =
(a1, . . . , an) ∈ Rn and a scalar b ∈ R:

H~a,b = {~x = (x1, . . . , xn) ∈ Rn : ~x · ~a = b}
= {~x = (x1, . . . , xn) ∈ Rn : x1a1 + . . .+ xnan = b}.

Write C as the set of all hyperplanes: C = {H~a,b : ~a ∈ Rn \ {~0}, b ∈ R}. Then VC(C) = n.

Proof. Consider the subset S = {~e1, . . . , ~en} ⊆ Rn, where ~ei is the vector with 1 on the i-th component
and 0 everywhere else. Suppose B ⊆ S and there are two cases to consider:

1. If B = ∅, then let ~a = (1, 1, . . . , 1) ∈ Rn and the hyperplane H~a,−1 = {~x = (x1, . . . , xn) ∈ Rn :
x1 + . . .+ xn = −1} is disjoint from S.

2. If B 6= ∅, then set ~a = (a1, . . . , an) ∈ Rn \ {~0}, where ai = χB(~ei). Then the hyperplane H~a,1 = {~x =
(x1, . . . , xn) ∈ Rn : x1a1 + . . .+ xnan = 1} satisfies

H~a,1 ∩ S = B.
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Moreover, no subset S = {~x1, . . . , ~xn, ~xn+1} ⊆ Rn with cardinality n+ 1 can be shattered by C. At
best, there exists a unique hyperplane H~a,b containing n of these points, say {~x1, . . . , ~xn}, so if ~xn+1 ∈ H~a,b,
then there are no hyperplanes that include ~x1, . . . , ~xn, but not ~xn+1. Otherwise, if ~xn+1 /∈ H~a,b, then there
are no hyperplanes that include ~x1, . . . , ~xn, ~xn+1.

The VC dimension is central to the PAC learning model for concept classes. In fact, the PAC
learnability of a concept class is completely determined by its VC dimension.

4.1 Characterization of Concept Class PAC Learning

The following is one of the main theorems concerning PAC learning, whose proof results from Vapnik and
Chervonenkis’ paper [VC71] in 1971 and the 1989 paper [BEHW89] by Blumer et al.

Theorem 4.2 ( [VC71] and [BEHW89]). Let C be a concept class of a measurable space (X,S). The
following are equivalent:

1. C is distribution-free Probably Approximately Correct learnable.

2. VC(C) <∞.

Both directions of the proof for this result require expressing the number of sample training points
required for learning in terms of the VC dimension of C; a crucial lemma used in the proof is Sauer’s
Lemma, seen in [Sau72]. Given a concept class C with finite VC dimension, the lemma states that the
growth of |{A ∩ C : C ∈ C}| for any finite set A, with |A| = n, is bounded above by a polynomial function
in n as n grows to infinity.

Using Theorem 4.2, one can more easily determine whether a given concept class is distribution-free
PAC learnable.

Example 4.2. The set of all hyperplanes C = {H~a,b : ~a ∈ Rn \ {~0}, b ∈ R}, as defined in Example 4.1, is
distribution-free PAC learnable.

Every concept class C can be viewed as a function class FC = {χA : X → [0, 1] : A ∈ C}, as seen in
Section 3, so a natural question is whether the notion of shattering can be generalized. Indeed, the next
section introduces the Fat Shattering dimension of scale ε, which is a generalization of the VC dimension.

5 The Fat Shattering Dimension

Let ε > 0 from this section onwards. A combinatorial parameter which generalizes the Vapnik-Chervonenkis
dimension is the Fat Shattering dimension of scale ε, defined first by Kearns and Schapire in 1994.

This dimension, assigned to function classes, involves the notion of ε-shattering, but similar to the
notion of (regular) shattering, it can be defined for any collection of functions f : X → [0, 1], where X is
any set. For the sake of this paper, the following sections (still) assume X = (X,S) is a measurable space
and the collection of functions is a function class F .

Definition 5.1 ( [KS94]). Let F be a function class. Given a subset S = {x1, . . . , xn} ⊆ X, the class F
ε-shatters S, with witness c = (c1, . . . , cn) ∈ [0, 1]

n
, if for every e ∈ {0, 1}n, there exists f ∈ F such

that
f(xi) ≥ ci + ε for ei = 1, and f(xi) ≤ ci − ε for ei = 0.

Figure 5.1 illustrates the notion of ε-shattering for the subset S = {x1, . . . , x6}, with witness c =
(c1, . . . , c6). Given the binary vector e = (101011), there is a function f ∈ F that passes above c1 + ε, c3 +
ε, c5 + ε, c6 + ε at the points x1, x3, x5, x6, respectively, but passes below c2 − ε, c4 − ε at x2, x4.

Definition 5.2 ( [KS94]). The Fat Shattering dimension of scale ε > 0 of F , denoted by fatε(F), is defined
to be the cardinality of the largest finite subset of X that can be ε-shattered by F . If F can ε-shatter
arbitrarily large finite subsets, then the Fat Shattering dimension of scale ε of F is defined to be ∞.
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x1 x2 x3 x4 x5 x6

c1

c2

c3

c4

c5

c6

e = (101011)

f1

>_ ε 

Figure 5.1: Diagram of ε-shattering.

When the function class F consists of only functions taking values in {0, 1}, then the Fat Shattering
dimension of any scale ε ≤ 1/2 of F agrees with the VC dimension of the corresponding collection of subsets
of X, induced by the (indicator) functions in F .

With the generalization from a concept class to a function class, a natural question is whether the
finiteness of the Fat Shattering dimension of all scales ε for a function class F is equivalent to F being
distribution-free PAC learnable. This question is addressed in the following subsection.

5.1 Sufficient Condition for Function Class PAC Learning

One direction of Theorem 4.2 can be generalized and stated in terms of the Fat Shattering dimension of
scale ε of a function class.

Theorem 5.1 ( [ABDCBH97] and [Vid97]). Let F be a function class. If fatε(F) <∞ for all ε > 0, then F
is distribution-free PAC learnable.

However, the converse to Theorem 5.1 is false. There exists a distribution-free PAC learnable function
class with infinite Fat Shattering dimension of some scale ε.

In fact, for every concept class C with cardinality ℵ0 or 2ℵ0 , there is an associated function class FC
defined as follows. Set up a bijection b : C → [0, 1/3] or to [0, 1/3] ∩Q, depending on the cardinality of C,
and for every A ∈ C, define a function fA : X → [0, 1] by

fA(x) = χA(x) + (−1)χA(x)b(A).

Now, write FC = {fA : A ∈ C}. Note that FC can be thought of the collection of all indicator functions
of A ∈ C, except that each “indicator” function fA has two unique identifying points b(A) and 1− b(A),
instead of simply 0 and 1. The following proposition provides many counterexamples to the converse of
Theorem 5.1, which are much simpler than the one found in [Vid97].

The construction of the function class FC and the proposition below are developed from an idea of
Example 2.10 in [Pes10a].

Proposition 5.2. Let C be a concept class. The associated function class FC = {fA : A ∈ C}, defined in the
previous paragraph, is always distribution-free PAC learnable; this class has infinite Fat Shattering
dimension of all scales ε < 1/6 if C has infinite VC dimension.

Proof. The function class FC is distribution-free PAC learnable because every function fA ∈ FC can be
uniquely identified with just one point x0 ∈ X in any labeled sample: fA(x0) ∈ {b(A), 1− b(A)} uniquely
determines A and thus, fA.

Furthermore, suppose C has infinite VC dimension. Let n ∈ N be arbitrary and because VC(C) =∞,
there exists S = {x1, . . . , xn} such that C shatters S. Suppose ε < 1/6 and we claim that FC ε-shatters S
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with witness c = (0.5, . . . , 0.5) ∈ [0, 1]
n
. Indeed, let e ∈ {0, 1}n and there exists A ∈ C such that

χA(xi) = ei,

for all i = 1, . . . , n, by Proposition 4.1. As a result,

fA(xi) = 1− b(A) ≥ 0.5 + ε for ei = 1

and

fA(xi) = b(A) ≤ 0.5− ε for ei = 0.

Consequently, FC has infinite Fat Shattering dimension of all scales ε < 1/6.

One research topic we would like to consider in the future is to come up with a new combinatorial
parameter for a function class, related to the notion of shattering, which would characterize PAC distribution-
free learning. This new parameter would have to solve the problem of unique identifications of functions, a
problem that does not occur with concept classes.

The next section explains the main result of our research: bounding the Fat Shattering dimension of
scale ε of a composition function class which is built with a continuous logic connective.

6 The Fat Shattering Dimension of a Composition Function

Class

The goals of this section are to construct a new function class from old ones by means of a continuous logic
connective and to bound the Fat Shattering dimension of scale ε of the new function class in terms of the
dimensions of the old ones. The following subsection provides this construction, which can be found in
Chapter 4 of [Vid97], in the context of concept classes using a connective of classical logic.

6.1 A Review of the Construction in the Context of Concept Classes

Let C1, C2, . . . , Ck be concept classes, where k ≥ 2, and let u : {0, 1}k → {0, 1} be any function, commonly
known as a connective of classical logic. A new collection of subsets of X arises from C1, . . . , Ck as follows.

As mentioned earlier in this paper, every element A ∈ Ci can be identified as a binary function
f : X → {0, 1}, namely its characteristic function f = χA, and vice versa. Now, for any k functions
f1, . . . , fk : X → {0, 1}, where fi ∈ Ci with i = 1, . . . , k, consider a new function u(f1, . . . , fk) : X → {0, 1}
defined by

u(f1, . . . , fk)(x) = u(f1(x), . . . , fk(x)).

The set of all possible u(f1, . . . , fk), denoted by u(C1, . . . , Ck), is given by

u(C1, . . . , Ck) = {u(f1, . . . , fk) : fi ∈ Ci}.

For instance, when k = 2, we can consider the “Exclusive Or” connective ⊕ : {0, 1}2 → {0, 1} defined
by

p⊕ q = (p ∧ ¬q) ∨ (¬p ∧ q),
which corresponds to the symmetric difference operation. Then, our new concept class constructed from C1
and C2 is

{A1 4A2 : A1 ∈ C1, A2 ∈ C2}.

The next known theorem states that if C1, C2, . . . , Ck all have finite VC dimension to start with, then
regardless of u, the new collection u(C1, . . . , Ck) always has finite VC dimension.
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Theorem 6.1 ( [Vid97]). Let k ≥ 2. Suppose C1, . . . , Ck are concept classes, each viewed as a collection of
binary functions, and u : {0, 1}k → {0, 1} is any function. If the VC dimension of Ci is finite for all
i = 1, . . . , k. Then there exists a constant α = αk, which depends only on k, such that

VC(u(C1, . . . , Ck)) < dαk,

where d =
k

max
i=1

VC(Ci).

The proof of this theorem can be found in [Vid97] and uses Sauer’s Lemma to bound the VC dimension
of u(C1, . . . , Ck). The main objective of our research is to generalize this theorem for function classes, in
terms of the Fat Shattering dimension of scale ε, but the connective of classical logic u would have to be
replaced by a continuous logic connective, which is simply a continuous function u : [0, 1]

k → [0, 1].

6.2 Construction of New Function Class with Continuous Logic
Connective

In first-order logic, there are only two truth-values 0 or 1, so a connective is a function {0, 1}k → {0, 1} in
the classical sense. However, in continuous logic, truth-values can be found anywhere in the unit interval
[0, 1]. Therefore, we should consider a function u : [0, 1]

k → [0, 1], which will transform function classes, and
require that u be a continuous logic connective. In other words, u should be continuous from the (product)

metric space [0, 1]
k

to the unit interval [YBHU08]; in fact, because u is continuous from a compact metric
space to a metric space, it is automatically uniformly continuous.

The following provides the definition of a uniformly continuous function u from any metric space to
another, but we must first qualify u with a modulus of uniform continuity.

Definition 6.1 (See e.g. [YBHU08]). A modulus of uniform continuity is any function δ : (0, 1]→ (0, 1].

Definition 6.2 (See e.g. [YBHU08]). Let (M1, d1) and (M2, d2) be two metric spaces. A function u : M1 →
M2 is uniformly continuous if there exists (a modulus of uniform continuity) δ : (0, 1] → (0, 1] such
that for all ε ∈ (0, 1] and m1,m2 ∈M1, if d1(m1,m2) < δ(ε), then d2(u(m1), u(m2)) < ε.

Such a δ is called a modulus of uniform continuity for u.

Given function classes F1, . . . ,Fk and a uniformly continuous function u : [0, 1]
k → [0, 1], consider the

new function class u(F1, . . . ,Fk) defined by

u(F1, . . . ,Fk) = {u(f1, . . . , fk) : fi ∈ Fi},
where u(f1, . . . , fk)(x) = u(f1(x), . . . , fk(x)) for all x ∈ X, just as in Section 6.1 for concept classes, with
fi ∈ Fi and i = 1, . . . , k. Our main result states that the Fat Shattering dimension of scale ε of u(F1, . . . ,Fk)
is bounded by a sum of the Fat Shattering dimensions of scale δ(ε, k) of F1, . . . ,Fk, where δ(ε, k) is a
function of the modulus of uniform continuity δ(ε) for u and k. It is a known result, seen in Chapter 5
of [Vid97], that this new class u(F1, . . . ,Fk) has finite Fat Shattering dimension of all scales ε > 0 (and
thus, it is distribution-free PAC learnable) if each of F1, . . . ,Fk has finite Fat Shattering dimension of all
scales, but no bounds were previously known.

6.3 Main Result

Fix k ≥ 2 and the following theorem is our main new result.

Theorem 6.2. Let ε > 0, F1, . . . ,Fk be function classes of X, and u : [0, 1]
k → [0, 1] be a uniformly

continuous function with modulus of continuity δ(ε). Then

fatε(u(F1, . . . ,Fk)) ≤
(
K log(4c′k

√
k/(δ(ε/(2c′))ε))

K ′ log(2)

)
n∑

i=1

fat
c
δ(ε/(2c′))ε

k
√
k

(Fi),

where c, c′,K,K ′ are some absolute constants.
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Extracting the actual values of these absolute constants is not easy, and we hope to find them in
future research. For this reason, comparing the bound in Theorem 6.2 with the existing estimate for the
VC dimension of a composition concept class is difficult; however, in statistical learning theory, estimates
for function class learning are generally much worse than estimates for concept class learning.

In order to prove Theorem 6.2, for clarity, we will introduce an auxiliary function φ : F1 × . . .×Fk →
[0, 1]

X
and prove the following.

Lemma 6.1. Let ε > 0. If u : [0, 1]
k → [0, 1] is uniformly continuous with modulus of continuity δ(ε), then

the function φ : F1 × . . .×Fk → [0, 1]
X

defined by

φ(f1, . . . , fk)(x) = u(f1(x), . . . , fk(x))

is also uniformly continuous with modulus of continuity δ(ε/2)ε
2k , from the metric space F1 × . . .×Fk

with distance d̃2 to [0, 1]
X

. Also, φ(F1× . . .×Fk) = u(F1, . . . ,Fk), where the symbol φ(F1× . . .×Fk)
simply represents the image of φ.

Then, we will prove the next lemma, and our main result will follow directly.

Lemma 6.2. Let ε > 0, F1, . . . ,Fk be function classes of X, and φ : F1 × . . .×Fk → [0, 1]
X

be uniformly
continuous with some modulus of continuity δ(ε, k), a function of ε and k. Then

fatc′ε(φ(F1 × . . .×Fk)) ≤
(
K log(2

√
k/δ(ε, k))

K ′ log(2)

)
k∑

i=1

fat
c
δ(ε,k)√

k

(Fi),

where c, c′,K,K ′ are some absolute constants.

6.4 Proofs

This subsection provides all the proofs for our main theorem.

Proof of Lemma 6.1. Suppose u : [0, 1]
k → [0, 1] is uniformly continuous with a modulus of continuity

δ(ε), where [0, 1]
k

is a metric space with the L2 product distance d2. We claim that the function

φ : F1 × . . .×Fk → [0, 1]
X

defined by

φ(f1, . . . , fk)(x) = u(f1(x), . . . , fk(x))

is uniformly continuous with modulus of continuity δ(ε/2)ε
2k . Let ε > 0 and

(f1, . . . , fk), (f ′1, . . . , f
′
k) ∈ F1 × . . .×Fk.

Suppose

d̃2((f1, . . . , fk), (f ′1, . . . , f
′
k)) =

√
((||f1 − f ′1||2)2 + . . .+ (||fk − f ′k||2)2)

<
δ(ε/2)ε

2k
=

√
δ(ε/2)2(ε/2)2

k2
.

Hence, for each i = 1, . . . , k,

||fi − f ′i ||2 =

√(∫

X

(fi(x)− f ′i(x))2 dµ(x)

)
<

√
δ(ε/2)2(ε/2)2

k2
.

Write Ai = {x ∈ X : |fi(x) − f ′i(x)| ≥
√

δ(ε/2)2

k } and we must have that µ(Ai) <
(ε/2)2

k , for each

i = 1, . . . , k. Otherwise,
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∫

X

(fi(x)− f ′i(x))2 dµ(x) =

∫

Ai

(fi(x)− f ′i(x))2 dµ(x) +

∫

X\Ai
(fi(x)− f ′i(x))2 dµ(x)

≥
∫

Ai

(√
δ(ε/2)2

k

)2

dµ(x) +

∫

X\Ai
(fi(x)− f ′i(x))2 dµ(x)

= µ(Ai)

(√
δ(ε/2)2

k

)2

+

∫

X\Ai
(fi(x)− f ′i(x))2 dµ(x)

≥ (ε/2)2

k

δ(ε/2)2

k
+

∫

X\Ai
(fi(x)− f ′i(x))2 dµ(x)

≥ δ(ε/2)2(ε/2)2

k2
,

which is a contradiction. Now, write A = A1∪ . . .∪Ak and we have that X \A = {x ∈ X : |fi(x)−f ′i(x)| <√
δ(ε/2)2

k , for all i = 1, . . . , k}. Suppose x ∈ X \A and then

d2((f1(x), . . . , fk(x)), (f ′1(x), . . . , f ′k(x))) =
√
|f1(x)− f ′1(x)|2 + . . .+ |fk(x)− f ′k(x)|2

<

√(
δ(ε/2)2

k
+ . . .+

δ(ε/2)2

k

)
< δ(ε/2).

Consequently, by the uniform continuity of u, for all x ∈ X \A,

|u(f1(x), . . . , fk(x))− u(f ′1(x), . . . , f ′k(x))| < ε/2.

Finally,

||φ(f1, . . . , fk)− φ(f ′1, . . . , f
′
k)||2 =

√(∫

X

(u(f1(x), . . . , fk(x))− u(f ′1(x), . . . , f ′k(x)))2 dµ(x)

)

≤

√√√√
(∫

X\A
(u(f1(x), . . . , fk(x))− u(f ′1(x), . . . , f ′k(x)))2 dµ(x)

)

+

√(∫

A

(u(f1(x), . . . , fk(x))− u(f ′1(x), . . . , f ′k(x)))2 dµ(x)

)

<

√√√√
(∫

X\A
(ε/2)2 dµ(x)

)
+

√(∫

A

1 dµ(x)

)

≤ (ε/2) + (ε/2) = ε,

as µ(A) ≤∑k
i=1 µ(Ai) ≤ k

(
(ε/2)2

k

)
= (ε/2)2.

Now, in order to prove Lemma 6.2, we first introduce the concept of an ε-covering number for any
metric space, based on [MV03], and relate this number for a function class to its Fat Shattering dimension
of scale ε by using results from Mendelson and Vershynin [MV03] and Talagrand [Tal03].

Definition 6.3. Let ε > 0 and suppose (M,d) is a metric space. The ε-covering number, denoted by
N(M, ε, d), of M is the minimal number N such that there exists elements m1,m2, . . . ,mN ∈M with
the property that for all m ∈M , there exists i ∈ {1, 2, . . . , N} for which

d(m,mi) < ε.
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The set {m1,m2, . . . ,mN} is called a (minimal) ε-net of M .

The following proposition relates the ε-covering number of a product of metric spaces, with the L2

product distance d2, M1 × . . .×Mk to the ε√
k

-covering number of each space Mi.

Proposition 6.3. Let ε > 0 and suppose (M1, d1), . . . , (Mk, dk) are metric spaces, each with finite ε√
k

-covering

numbers, Ni = N(Mi,
ε√
k
, di) for i = 1, . . . , k. Then

N(M1 × . . .×Mk, ε, d
2) ≤

k∏

i=1

Ni.

Proof. Let Ci = {ai1, . . . , aiNi} be a minimal ε√
k

-net for Mi with respect to distance di, where i = 1, . . . , k

and suppose (a1, . . . , ak) ∈ M1 × . . . ×Mk. Then, for each i = 1, . . . , k, there exists aiji ∈ Ci, where

1 ≤ ji ≤ Ni such that di(a
i, aiji) <

ε√
k

. Hence,

d2((a1, . . . , ak), (a1
j1 , . . . , a

k
jk

)) =
√(

(d1(a1, a1
j1

))2 + . . .+ (dk(ak, akjk))2
)

<

√√√√
((

ε√
k

)2

+ . . .+

(
ε√
k

)2
)

= ε,

where each (a1
j1
, . . . , akjk) ∈ C1×. . .×Ck, which has cardinality Πk

i=1Ni. Therefore, N(M1×. . .×Mk, ε, d
2) ≤

Πk
i=1Ni.

Also, if u : M1 →M2 is any uniformly continuous function with a modulus of uniform continuity δ(ε)
from any metric space to another, then the image of a minimal δ(ε)-net of M1 under u becomes an ε-net
for u(M1).

Proposition 6.4. Let ε > 0 and suppose (M1, d1) and (M2, d2) are two metric spaces. If a function u : M1 →
M2 is uniformly continuous with a modulus of continuity δ(ε), then N(u(M1), ε, d2) ≤ N(M1, δ(ε), d1),
where u(M1) denotes the image of u.

Proof. Suppose N = N(M1, δ(ε), d1) is the δ(ε)-covering number for M1 and let {m1, . . . ,mN} be a δ(ε)-net
for M1. Hence for every u(m) ∈ u(M1), where m ∈M1, there exists i ∈ {1, . . . , N} such that

d1(m,mi) < δ(ε),

which implies d2(u(m), u(mi)) < ε as u is uniformly continuous. As a result, the set

{u(m1), . . . , u(mN )}

is an ε-net for u(M1), so N(u(M1), ε, d2) ≤ N(M1, δ(ε), d1).

In particular, we can view F1, . . . ,Fk as metric spaces, all with distances induced by the L2(µ) norm

and suppose φ : F1 × . . .×Fk → [0, 1]
X

is uniformly continuous with modulus of continuity δ(ε, k). Then,

by Proposition 6.3, if F1, . . . ,Fk all have finite δ(ε,k)√
k

-covering numbers, the metric space F1 × . . . × Fk,

with the L2 product metric d̃2, also has a finite δ(ε, k)-covering number: if we write N(Fi, δ(ε,k)√
k
, L2(µ)) as

the δ(ε,k)√
k

-covering number for Fi, then,

N(F1 × . . .×Fk, δ(ε, k), d̃2) ≤
k∏

i=1

N(Fi,
δ(ε, k)√

k
, L2(µ)).
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Now, by Proposition 6.4,

N(φ(F1 × . . .×Fk), ε, L2(µ)) ≤ N(F1 × . . .×Fk, δ(ε, k), d̃2)

≤
k∏

i=1

N(Fi,
δ(ε, k)√

k
, L2(µ)).

In other words, the ε-covering number for φ(F1×. . .×Fk) is bounded by a product of the δ(ε,k)√
k

-covering

numbers of each Fi. To prove Lemma 6.2, we now state the main theorem of a paper written by Mendelson
and Vershynin, which relates the ε-covering number of a function class to its Fat Shattering dimension of
scale ε.

Theorem 6.5 ( [MV03]). Let ε > 0 and let F be a function class. Then for every probability measure µ,

N(F , ε, L2(µ)) ≤
(

2

ε

)Kfatcε(F)

for absolute constants c,K.

And Talagrand provides the converse.

Theorem 6.6 ( [Tal03]). Following the notations of Theorem 6.5, there exists a probability measure µ such
that

N(F , ε, L2(µ)) ≥ 2K
′fatc′ε(F),

for absolute constants c′,K ′.

Proof of Lemma 6.2. By Propositions 6.3 and 6.4,

N(φ(F1 × . . .×Fk), ε, L2(µ)) ≤
k∏

i=1

N(Fi,
δ(ε, k)√

k
, L2(µ)),

so

log(N(φ(F1 × . . .×Fk), ε, L2(µ))) ≤
k∑

i=1

log(N(Fi,
δ(ε, k)√

k
, L2(µ))).

By Theorem 6.5,

logN(Fi,
δ(ε, k)√

k
, L2(µ)) ≤ Kfat

c
δ(ε,k)√

k

(Fi) log(2
√
k/δ(ε, k)),

for any probability measure µ where c,K are absolute constants. Moreover, by Theorem 6.6 for some
probability measure µ and absolute constants c′,K ′,

log(N(φ(F1 × . . .×Fk), ε, L2(µ))) ≥ K ′fatc′ε(φ(F1 × . . .×Fk)) log(2)

and altogether,

fatc′ε(φ(F1 × . . .×Fk)) ≤
∑k
i=1Kfat

c
δ(ε,k)√

k

(Fi) log(2
√
k/δ(ε, k))

K ′ log(2)

=

(
K log(2

√
k/δ(ε, k))

K ′ log(2)

)
k∑

i=1

fat
c
δ(ε,k)√

k

(Fi).

Finally, we will prove our main theorem.
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Proof of Theorem 6.2. By Lemma 6.1, if u : [0, 1]
k → [0, 1] is uniformly continuous with modulus of

continuity δ(ε), then φ : F1 × . . .×Fk → [0, 1]
X

defined by

φ(f1, . . . , fk)(x) = u(f1(x), . . . , fk(x))

is also uniformly continuous with modulus of continuity δ(ε/2)ε
2k . Then, apply Lemma 6.2 with δ(ε, k) = δ(ε/2)ε

2k
and with a simple change of variables c′ε′ → ε, Theorem 6.2 follows directly.

Altogether, we can summarize the maps in this section in the following two diagrams (where i is the
diagonal map):

X
i // Xk f1×...×fk // [0, 1]

k u // [0, 1] ,

while

F1 × . . .×Fk
φ // [0, 1]

X
.

This result is potentially useful because it allows us to construct new function classes using common
continuous logic connectives and bound their Fat Shattering dimensions of scale ε. For instance, the
function u : [0, 1]

2 → [0, 1] defined by u(r1, r2) = r1 · r2 (multiplication) is uniformly continuous with

a modulus of continuity δ(ε) = ε
2 . Indeed, let ε > 0 and consider (r1, r2), (r′1, r

′
2) ∈ [0, 1]

2
. Suppose

d2((r1, r2), (r′1, r
′
2)) < δ(ε) = ε

2 , so

|r1 − r′1| <
√
|r1 − r′1|2 + |r2 − r′2|2 <

ε

2

and similarly, |r2 − r′2| < ε
2 . Then,

|u(r1, r2)− u(r′1, r
′
2)| = |r1r2 − r′1r′2|

= |r1r2 − r1r
′
2 + r1r

′
2 − r′1r′2|

≤ |r1(r2 − r′2)|+ |r′2(r1 − r′1)|
≤ |r2 − r′2|+ |r1 − r′1| <

ε

2
+
ε

2
= ε.

As a result, if F1 and F2 are two function classes with finite Fat Shattering dimensions of some
scale ε, then the function class u(F1,F2) = F1F2 = {f1 · f2 : f1 ∈ F1, f2 ∈ F2}, defined by point-wise
multiplication, also has finite Fat Shattering dimension of scale ε, up to some constant factor, and Theorem
6.2 provides an upper bound.

We have made an interesting connection, which has not been explored much in the past, between
continuous logic and PAC learning, and we plan to investigate this connection even further. For instance,
the relationship of compositions of function classes and continuous logic may be interesting to study because
compositions of uniformly continuous functions are again uniformly continuous. Furthermore, we can try
to add some topological structures to concept or function classes to see how PAC learning can be affected.
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Abstract: A classic question in analytic number theory is to find asymptotics for σk(x) and πk(x),
the number of integers n ≤ x with exactly k prime factors, where πk(x) has the added constraint that
all the factors are distinct. This problem was originally resolved by Landau in 1900, and much work
was subsequently done where k is allowed to vary. In this paper we look at a similar question about
integers with a specific prime factorization. Given α ∈ Nk, α = (α1, α2, . . . , αk) let σα(x) denote the
number of integers of the form n = pα1

1 · · · pαkk where the pi are not necessarily distinct, and let πα(x)
denote the same counting function with the added condition that the factors are distinct. Our main
result is asymptotics for both of these functions.

1 Introduction

One of the major problems in the 19th century was to find the growth rate of the number of primes less
then x, that is the function

π(x) :=
∑

p≤x
1.

In 1797, Legendre conjectured that π(x) is asymptotic to x
log x , written as π(x) ∼ x

log x , which means that
we have the limit

lim
x→∞

π(x)

x/ log x
= 1.

Although a more precise conjecture was given by Gauss, little progress was made over the next 50 years.
In 1848 and 1850, Chebyshev made several contributions, and managed to prove weaker upper and lower
bounds. A major breakthrough occurred in 1859, when Riemann published his seminal paper, “On the
Number of Primes Less Than a Given Magnitude,” in which he outlined a proof of Legendre’s conjecture
using complex analysis and the zeta function. In 1896, 99 years after Legendre made his conjecture,
Hadamard and de la Vallée Poussin rigorously completed Riemann’s outline, proving what is known today
as the prime number theorem [MV07]. In particular, we can write down the explicit error term :

π(x) =
x

log x
+O

(
x

log2 x

)
, (1.1)

but to be more precise than this we would need to introduce the function from Gauss’s conjecture.
A natural follow up question is whether or not we have similar asymptotics for the number of integers

with exactly k prime factors. There are two reasonable ways to define the counting function; let σk(x)
denote the number of integers less then x with exactly k prime factors, and let πk(x) be the same but with
the added constraint that the k prime factors must be distinct. For convenience, we also define the sets
Pσk = {n : n = p1 · · · pk} and Pπk = {n : n = p1 · · · pk where i 6= j ⇒ pi 6= pj}, so that we may write

σk(x) =
∑

n ≤ x
n ∈ Pσk

1 and πk(x) =
∑

n ≤ x
n ∈ Pπk

1.
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In 1900 by Landau [Lan00] found the growth rate of these functions, and he proved that for fixed k we have

πk(x) ∼ σk(x) ∼ x (log log x)
k−1

(k − 1)! log x
. (1.2)

E. M. Wright then gave a short elementary proof of this in 1954 [Wri54]. Heuristically we might expect
this kind of asymptotic since

∑∞
k=1 σk(x) = bxc, and if we could ignore the error term and sum over all

k ≤ log x, we would arrive back at this equality again as

∞∑

k=1

σk(x) ≈
∞∑

k=1

x (log log x)
k−1

(k − 1)! log x
=

x

log x

∞∑

k=0

(log log x)
k

k!
= x.

Note that even though this works out, the heuristic is not entirely reliable. It seems to suggest that

σk(x) ∼ x(log log x)k−1

(k−1)! log x even when k varies with x, which is not true when k ≈ log log x [HT88]. In his paper,

Landau also gave explicit error terms, and showed that for k ≥ 2

σk(x) =
x (log log x)

k−1

(k − 1)! log x
+O

(
x (log log x)

k−2

log x

)
(1.3)

and

πk(x) =
x (log log x)

k−1

(k − 1)! log x
+O

(
x (log log x)

k−2

log x

)
(1.4)

where the notation O(f(x)) means that the error term is bounded in absolute value by some constant
multiple of f(x). (Although seperated on different lines, note that the above asymptotics are indeed the
same.) In this paper we are interested in something very similar, which is counting the number of integers
of a particular shape, integers of the form pα1

1 · · · pαnn where the αi are fixed exponents. For example, we
may ask how many integers of the form pq3 are there less than x. To discuss this problem, we begin by
introducing some notation. Given a vector α = (α1, · · · , αk) ∈ Nk, define σα(x) to be the number of integers
n ≤ x of the form n = pα1

1 · · · pαkk , allowing prime repetitions, and πα(x) to be the number without prime
repetitions. If we set Pσα = {n : n = pα1

1 · · · pαrr }, and Pπα = {n : n = pα1
1 · · · pαrr where i 6= j ⇒ pi 6= pj},

then as was done for πk(x), and σk(x), we can rewrite these counting functions as

σα(x) =
∑

n ≤ x
n ∈ Pσα

1 and πα(x) =
∑

n ≤ x
n ∈ Pπα

1.

Our goal is to provide asymptotics for σα(x) and πα(x), and our main theorem is:

Theorem 1.1. Let r, α be positive integers. Suppose we have a vector of the form α = (α, · · · , α, α1, · · · , αr) ∈
Nk+r, where k > 0 is the multiplicity of α, and where α < αi for all i. Then if β = (α1, · · · , αr) ∈ Nr,
we have

σα (x) ∼ σk
(
x

1
α

) ∑

n∈Pσβ

n−
1
α

and
πα (x) ∼ σk

(
x

1
α

) ∑

n∈Pπβ

n−
1
α .

The above theorem tells us that the higher powers introduce a constant factor into the asymptotic since
both of the series

∑
n∈Pσβ n

− 1
α and

∑
n∈Pπβ n

− 1
α converge absolutely. The convergence of these series

follows from the fact that αi
α > 1 along with equation 2.1 in the next section. In particular, returning
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to our previous example of counting the number of integers of the form pq3 less than x, we have that
Pπβ = Pσβ =

{
p3 : p is prime

}
, and hence

π(1,3)(x) ∼ σ(1,3)(x) ∼ x

log x

∑

p

1

p3
=

x

log x
P (3)

where P (s) =
∑
p p
−s is the prime zeta function. We can ask whether the constant can always be rewritten

as a product of prime zeta functions, and this is answered by the following theorem:

Theorem 1.2. Suppose we are given α < α1 ≤ · · · ≤ αr, and that for any choice of εi ∈ {−1, 0, 1}, we have∑
i εiαi = 0 implies εi = 0 for every i. Then

∑

n∈Pσβ

n−
1
α =

r∏

i=1

P
(αi
α

)

where P (s) =
∑
p p
−s is the prime zeta function. This is equivalent to the condition that every n ∈ Pσβ ,

where β = (α1, . . . , αr), has a unique representation as n = pα1
1 · · · pαrr .

For example, the above two theorems imply that the number of integers of the form n = p1p2p
3
3p

5
4p

19
5 , with

n ≤ x, will be asymptotic to

σ2 (x)P (3)P (5)P (19) ∼ x log log x

log x
P (3)P (5)P (19).

2 The Main Result

It is very important to split up the smallest power, as this is contributes the most to the sum. Throughout this
section, we write our vector of exponents as α = (α, · · · , α, α1, · · · , αr) ∈ Nk+r, with 1 ≤ α < α1 ≤ · · · ≤ αr,
where k > 0 is the multiplicity of α, and let β = (α1, · · · , αr) ∈ Nr. To start, we provide a simple upper
bound for σβ(x). Notice that

πβ(x) ≤ σβ(x) =
∑

m ≤ x
m ∈ Pσβ

1 ≤
∑

p
α1
1 ···p

αr
r ≤x

1,

where the right hand sum ranges over all vectors of primes of length r satisfying pα1
1 · · · pαrr ≤ x. Since

α1 ≤ αi for all i, and pα1
1 · · · pαrr ≤ x implies that pα1

1 pα1
2 · · · pα1

r ≤ x, we see that replacing every exponent
by α1 only increases the sum. Then using 1.2 we have

πβ(x) ≤ σβ(x) ≤
∑

p1···pr≤x
1
α1

1 = O

(
x

1
α1

(log log x)
r−1

log x

)
. (2.1)

The following subsection is devoted to examining σα(x). The key will be using the hyperbola method, and
most of the lemmas will apply identically to the proof for πα(x).

2.1 σα(x)

Each integer n ∈ Pσα has one part in Pσk , and one part in Pσβ , and our goal will be to split it up between
these two to better understand σα(x). With this in mind, we might expect

σα(x) ≈
∑

mnα ≤ x
n ∈ Pσk ,m ∈ Pσβ

1.
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However, this will not be an exact equality as an integer k ≤ x with k ∈ Pσα may have more than
one representation of the form k = mnα with n ∈ Pσk , m ∈ Pσβ . Since k ∈ Pσα can have at most one
representation of the form k = mnα with n ∈ Pπk , m ∈ Pσβ , we have the inequalities

∑

mnα ≤ x
n ∈ Pπk ,m ∈ Pσβ

1 ≤ σα(x) ≤
∑

mnα ≤ x
n ∈ Pσk ,m ∈ Pσβ

1.

Rewriting so that we first sum over m, this is

∑

mnα ≤ x
n ∈ Pσk ,m ∈ Pσβ

1 =
∑

m ≤ x
m ∈ Pσβ

∑

nα ≤ x
m

n ∈ Pσk

1 =
∑

m ≤ x
m ∈ Pσβ

σk

(( x
m

) 1
α

)

and we have that ∑

m ≤ x
m ∈ Pσβ

πk

(( x
m

) 1
α

)
≤ σα(x) ≤

∑

m ≤ x
m ∈ Pσβ

σk

(( x
m

) 1
α

)
. (2.2)

Our first goal will be to remove all of the terms from the sum with m ≥ x
(log x)C

for some constant C > 2,

without introducing large error. For example, we could take C = 3 to prove the asymptotic. However to
achieve the optimal error term we need something of the form C = 2αα1 + 1, a choice which will become
clear later on. Note that we need only bound this sum for σk(x), since πk(x) ≤ σk(x), and this is covered
by the following lemma.

Lemma 2.1. For C > 1 we have that

∑

(log x)
C
< m ≤ x

m ∈ Pσβ

σk

(( x
m

) 1
α

)
= O


 x

1
α

(log x)
(C−1)

(
1− α

α1

)


 .

Proof. We may change the order of summation and write

∑

(log x)
C ≤ m ≤ x

m ∈ Pσβ

σk

(( x
m

) 1
α

)
=

∑

(log x)
C ≤ m ≤ x

m ∈ Pσβ

∑

nα ≤ x
m

n ∈ Pσk

1

=
∑

nα ≤ x
(log x)C

n ∈ Pσk

∑

(log x)
C ≤ m ≤ x

nα

m ∈ Pσβ

1.

Using 2.1 this is bounded above by

∑

nα ≤ x
(log x)C

n ∈ Pσk

∑

m ≤ x
nα

m ∈ Pσβ

1 =
∑

nα ≤ x
(log x)C

n ∈ Pσk

O

(
x

1
α1

n
α
α1

(log log (x/nα))
r−1

log (x/nα)

)

= O



x

1
α1 (log log x)

r−1
∑

nα ≤ x
(log x)C

n ∈ Pσk

1

n
α
α1



.
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Taking the trivial bound, the inner sum becomes

∑

nα ≤ x
(log x)C

n ∈ Pσk

1

n
α
α1

≤
∑

n≤ x
1
α

log
C
α x

1

n
α
α1

= O



(

x
1
α

logC x

)− α
α1
−1



= O


 1

(log x)
C
(

1− α
α1

)


 ,

so that we have the upper bound

O


 x

1
α

(log x)
(C−1)

(
1− α

α1

)
(log log x)

r−1

(log x)
1− α

α1


 = O


 x

1
α

(log x)
(C−1)

(
1− α

α1

)


 .

Combining 2.2 along with Lemma 2.1 and Landau’s estimates 1.3, 1.4 for k > 1 yields

σα(x) =
1

(k − 1)!

∑

m ≤ (log x)
C

m ∈ Pσβ

α
x

1
α

(
log
(

1
α log

(
x
m

)))k−1

m
1
α log

(
x
m

)

+O




x
1
α

(log x)
(C−1)

(
1− α

α1

) +
∑

m ≤ (log x)
C

m ∈ Pσβ

x
1
α

(
log
(

1
α log

(
x
m

)))k−2

m
1
α log

(
x
m

)




, (2.3)

and for k = 1 by 1.1, the prime number theorem, we have

σα(x) =
∑

m ≤ (log x)
C

m ∈ Pσβ

α
x

1
α

m
1
α log

(
x
m

)

+O




x
1
α

(log x)
(C−1)

(
1− α

α1

) +
∑

m ≤ (log x)
C

m ∈ Pσβ

x
1
α

m
1
α log2

(
x
m

)




. (2.4)

If we write
(
log
(

1
α log

(
x
m

)))k−1
=
(
log log

(
x
m

)
− logα

)k−1
and then expand using the binomial theorem,

all of the terms will be consumed by the error term except for the one with
(
log log

(
x
m

))k−1
, which allows

us to change the main term in the above to

1

(k − 1)!

∑

m ≤ (log x)
C

m ∈ Pσβ

α
x

1
α

(
log log

(
x
m

))k−1

m
1
α log

(
x
m

) . (2.5)
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We may clean up the error terms by bounding each part of the sum from above. Since m ≤ (log x)
C

, 1

log( xm )
is bounded above by

1

log
(

x
(log x)C

) =
1

log (x)− C log log x
=

1

log x
+O

(
log log x

log2 x

)
.

We also have the trivial bounds

log

(
1

α
log
( x
m

))
≤ (log (log (x))) ,

and ∑

m ≤ (log x)
C

m ∈ Pσβ

1

m
1
α

≤
∑

m∈Pσβ

m−
1
α

since the right hand side is a convergent series. Combining these, for integers A ≥ 0, B > 1 we have that

∑

m ≤ (log x)
C

m ∈ Pσβ

x
1
α

(
log
(

1
α log

(
x
m

)))A

m
1
α logB

(
x
M

) = O

(
x

1
α (log log x)

A

logB (x)

)
, (2.6)

which gives an upper bound on the error term in both cases, k = 1 and k > 1. The following lemma allows
us to deal with the main term:

Lemma 2.2. For C > 1, we have that

∑

m ≤ (log x)
C

m ∈ Pσβ

(
log log

(
x
m

))k−1

m
1
α log

(
x
m

) =
(log log (x))

k−1

log x

∑

m ≤ (log x)
C

m ∈ Pσβ

m−
1
α +O

(
(log log x)

k−1

log2 x

)
.

Proof. First, note that we have the bounds

1

log (x)
≤ 1

log
(
x
m

) ≤ 1

log
(

x
log x

)

and (
log log

(
x

log x

))k−1

≤
(

log log
( x
m

))k−1

≤ (log log (x))
k−1

.

Using power series expansions we may write

1

log
(

x
log x

) =
1

log (x)
(

1− log log x
log x

) =
1

log x
+O

(
log log x

log2 x

)

and

(
log log

(
x

log x

))k−1

=

(
log log x+ log

(
1− log log x

log x

))k−1

= (log log x)
k−1

+O

(
(log log x)

k−1

log x

)
.
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Then 2.6 implies that

∑

m ≤ (log x)
C

m ∈ Pσβ

(
log log

(
x
m

))k−1

m
1
α log

(
x
m

) =
(log log x)

k−1

log x

∑

m ≤ (log x)
C

m ∈ Pσβ

m−
1
α +O

(
(log log x)

k−1

log2 x

)
.

Let C = 2αα1 + 1 so that (C − 1)
(

1− α
α1

)
= 2α (α1 − α) ≥ 2. Upon combining 2.3, 2.5, 2.6, and

lemma 2.2 for k > 1 we obtain

σα(x) = α
x

1
α (log log x)

k−1

(k − 1)! log x

∑

m ≤ (log x)
C

m ∈ Pσβ

m−
1
α +O

(
x

1
α

(log log x)
k−2

log x

)
. (2.7)

Similarly, 2.4, 2.6, and lemma 2.2 together yield

σα(x) = α
x

1
α

log x

∑

m ≤ (log x)
C

m ∈ Pσβ

m−
1
α +O

(
x

1
α

log2 x

)

for k = 1. To deal with the last sum, write
∑

m ≤ (log x)
C

m ∈ Pσβ

m−
1
α =

∑

m∈Pσβ

m−
1
α −

∑

m > (log x)
C

m ∈ Pσβ

m−
1
α .

Applying summation by parts, we have that

∑

m > (log x)
C

m ∈ Pσβ

m−
1
α =

∫ ∞

(log x)C
t−

1
α d (σβ(t))

= t−
1
ασβ(t)

∣∣∣∣
∞

(log x)C
+

1

α

∫ ∞

(log x)C
t−

1
α−1σβ(t)dt.

Then by 2.1 this becomes

O

(
(log x)

C
(

1
α1
− 1
α

)
(log log log x)

r−1

)
= O

(
1

(log x)
2

)

since C
(

1
α1
− 1

α

)
= −2 +

(
1
α1
− 1

α

)
. Thus for k > 1 we have

σα(x) = α
x

1
α (log log x)

k−1

(k − 1)! log x

∑

m∈Pσβ

m−
1
α +O

(
x

1
α

(log log x)
k−2

log x

)
, (2.8)

and for k = 1,

σα(x) = α
x

1
α

log x

∑

m∈Pσβ

m−
1
α +O

(
x

1
α

(log x)
2

)
. (2.9)



Numbers With a Predetermined Prime Factorization 28

This yields the desired asymptotic

σα(x) ∼ αx
1
α (log log x)

k−1

(k − 1)! log x

∑

m∈Pσβ

m−
1
α , (2.10)

and since

σk

(
x

1
α

)
∼ αx

1
α (log log x)

k−1

(k − 1)! log x

by Landau’s estimates 1.2, we conclude that

σα(x) ∼ σk
(
x

1
α

) ∑

m∈Pσβ

m−
1
α , (2.11)

proving the first part of Theorem 1.1.

2.2 πα(x)

To prove the same result for πα(x), we start again by splitting integers n ∈ Pσα into two parts, one in Pπk ,
and one in Pπβ . With this in mind we consider

∑

nαm ≤ x
n ∈ Pπk ,m ∈ Pπβ

1.

This will be strictly larger then πα(x) since n and m may have prime factors in common. (Note that
since all factors are distinct, we cannot have multiple representations k = mn.) However, we can throw
out all of the terms for which gcd (m,n) > 1 without affecting the asymptotic. Write n = q1 · · · qk, and
m = pα1

1 · · · pαrr . If gcd (m,n) > 1, then we must have qi = pj for some i, j. The set of all tuples with
qi = pj is bounded above by

σαi,j (x)

where αi,j = (α, . . . , α, α1, · · · , (αj + α), · · · , αr) ∈ Nk−1+r and we have k − 1 copies of α. In particular,
by 2.10, we see that

σαi,j (x) = O

(
x

1
α

(log log x)
k−2

log x

)

for k > 1, and

σαi,j (x) = Oε

(
x

1
α1

+ε
)

for any ε > 0 when k = 1. Since there are at most k · r possible pairs (i, j), it follows that for k > 1

πα(x) =
∑

nαm ≤ x
n ∈ Pπk ,m ∈ Pπβ

1 +O

(
x

1
α

(log log x)
k−2

log x

)
,

and a similar error term as before when k = 1. The main term may be rewritten as

∑

m ≤ x
m ∈ Pπβ

∑

nα ≤ x
m

n ∈ Pπk

1 =
∑

m ≤ x
m ∈ Pπβ

πk

(( x
m

) 1
α

)
,
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and from here, following through the exact same sequence of steps and lemmas from the previous section
will yield

∑

m ≤ x
m ∈ Pπβ

πk

(( x
m

) 1
α

)
∼ αx

1
α (log log x)

k−1

(k − 1)! log x

∑

m∈Pπβ

m−
1
α .

All of the upper bounds for σα(x) still apply to πα(x), and the only change is that we are summing over
Pπβ rather then Pσβ , which is why the final sum is different. Using 1.2, we get that

πα(x) ∼ πk
(
x

1
α

) ∑

m∈Pπβ

m−
1
α , (2.12)

proving the second part of Theorem 1.1. If the error term is kept throughout the above computations, we
get the more precise

πα(x) = α
x

1
α (log log x)

k−1

(k − 1)! log x

∑

m∈Pπβ

m−
1
α +O

(
x

1
α

(log log x)
k−2

log x

)
(2.13)

when k > 1, and

πα(x) = α
x

1
α (log log x)

k−1

(k − 1)! log x

∑

m∈Pπβ

m−
1
α +O

(
x

1
α

log2 x

)
, (2.14)

for k = 1.

3 The Constant Factor

Let α > 0 be given, let A = {α1, · · · , αr} where α < αi ≤ αj for all i, j, and set set β = (α1, . . . , αr). If
every n ∈ Pσβ has one and only one representation of the form n = pα1

1 · · · pαrr , then we may decompose the
sum as ∑

n∈Pσβ

n−
1
α =

∑

p1

∑

p2

· · ·
∑

pr

(pα1
1 · · · pαrr )

− 1
α .

This equals (∑

p1

p
−α1

α
1

)
· · ·
(∑

pr

p
−αrα
r

)

which by definition of the prime zeta function, P (s) =
∑
p p
−s, is

r∏

i=1

P
(αi
α

)
.

We now show that each integer can be uniquely represented if and only if
∑
i εiαi = 0 with εi ∈ {−1, 0, 1}

implies that every εi = 0. Suppose we are given εi, not all zero, with
∑
i εiαi = 0. Then we have then we

have αi1 + αi2 + · · ·+ αik = αj1 + αj2 + · · ·+ αjl = M for some M where each all of the in and jm are
distinct. Setting pi1 = · · · = pik = p, and pj1 = · · · = pjl = q, we will have a factor of qMpM , and this
allows us to permute q and p giving two representations of the same integer. Conversely, if we have two
representations of the same integer, then it must be because of a factor of the form qMpM , which implies
that we must have

∑
i εiαi = 0 for some non zero choices εi. This then completes the proof of Theorem 1.2.
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Rotterdam Must Die: Triangular Finite Volume

Methods Applied to the Shallow Water Equations
Luke Bovard and Katharine Hyatt

University of Waterloo

Introduction

In this paper we apply the method of finite volumes using a triangular mesh with a Roe solver to solve the
shallow water wave equations. In order to demonstrate the advantages of using a triangular mesh, we solve
two problems that are not easily solved using rectangular finite volume methods. We first solve the classic
problem of a broken circular dam and then apply the scheme to the Maeslantkering, a movable barrier
along the Nieuwe Waterweg in Holland used to regulate water flow from storms into the shipping canal, to
demonstrate the complicated geometry that triangular meshes are able to model.

Background

Failure of Finite Difference Schemes

The simplest scheme avaiable to solve PDEs numerically is to use a finite difference formula. The ideas
behind finite difference formula is to use simple approximations to the derivatives and numerically solve
the resulting system of equations. However, finite difference schemes are fairly limited in their scope. For
example, consider the well known one dimensional PDE Burger’s equation [Ach90]

∂u

∂t
+ u

∂u

∂x
= 0

the exact solution of this equation is well known and a prototypical example in the method of characteristics.
However, suppose we try and apply a finite difference scheme to the above. Discretising both derivatives
we have that

un+1
j − unj

∆t
+
unj
∆x

(unj − unj−1) = 0

where unj is the approximation at position j and time n. Suppose that we subject the above system to the
initial condition

u0(x) =

{
1 x ≤ 0
0 x > 0

Let us re-write the above scheme explicitly

un+1
j = unj −

∆t

∆x
unj (unj − unj−1)

Consider the first time-step. For xj > 0 we would have that

u1
j = u0

j −
∆t

∆x
u0
j (u

0
j − u0

j−1)

= 0− ∆t

∆x
0(0− u0

j−1)

= 0
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Figure 0.1: The triangular mesh used for the circular dam problem

Figure 0.2: The triangular mesh used for the Maeslantkering
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Figure 0.3: Initial condition of the circular dam problem

Figure 0.4: The circular dam at 100 timesteps
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Figure 0.5: The Maeslantkering fully closed along the Nieuwe Waterweg. (Source Rijkswaterstaat)

Figure 0.6: The initial wave sent in from the sea towards the Maeslantkering
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For xj ≤ 0 we have that

u1
j = u0

j −
∆t

∆x
u0
j (u

0
j − u0

j−1)

= 1− ∆t

∆x
(1− 1)

= 1

Thus after one iteration, the scheme has not changed and the profile will always stay the same. Clearly, as
can be verified by the method of characteristics, there is evolution, and for this specific example, shock
waves will form. Thus the limitation of finite difference schemes requires a different scheme is apparent.
In this paper we consider equations very similar to Burger’s equation. We note that we can re-write the
Burger’s equation in the following form

∂u

∂t
+

1

2

∂u2

∂x
= 0

which is referred to as a conservation law as it can be interpretted as the conservation of the solution.

Shallow Water Waves

The shallow water equations describe the motion of incompressible fluids in situations where the vertical
depth of the system is much smaller than the relevant horizontal length scale. Although simplified, the
shallow water equations are very powerful and can accurately model the motion of water in a puddle to the
entire ocean. The starting point of the derivation is given by the Navier-Stokes equations

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p+ ν∇2v + f

Since the Navier-Stokes equations are a very complicated non-linear set of partial differential equations, we
make a few simplifying assumptions. Firstly we assume inviscid flow (ν = 0), a reasonable assumption far
away from the boundary. However, since we are modelling a physical system, in actuality there will be
boundary layer effects since water is not actually inviscid, but these effects are small and negligible in this
approximation. Additionally, any turbulent effects are neglected. We also assume that the geometry is
only two dimensional since vertical length scale H, is much less than the horizontal scale L, giving H � L
(which is valid in the case of a long canal since the depth is about 10-15 m while the length is on the order
of hundreds of meters), and thus vertical velocity of the fluid can be neglected since the horizontal velocities
will dominate the dynamics (see [Ray] for an elementary derivation). A more rigorous argument can be made
by appealing to the orders of magnitude of the various terms in the Navier-Stokes equations [Ach90] [KC04]
in which the same result is shown. This approximation forms the basis of the shallow water wave which
can be in conservative form with h(x, y, t), the height of the water and u(x, y, t), v(x, y, t) the horizontal
components of velocity

∂h

∂t
+
∂(hu)

∂x
+
∂(hv)

∂y
= 0

∂(hu)

∂t
+

∂

∂x
(hu2 + gh2/2) +

∂(huv)

∂y
= 0 (0.1)

∂(hv)

∂t
+
∂(huv)

∂x
+

∂

∂y
(hv2 + gh2/2) = 0

on some domain Ω with boundary ∂Ω. It is possible to rewrite this set of equations in a vector form:

∂ϕ

∂t
+
∂Jx

∂x
+
∂Jy

∂y
= 0 (0.2)
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ϕ =




h
hu
hv


 Jx =




hu
hu2 + g

2h
2

huv


 Jy =




hv
huv

hv2 + g
2h

2


 (0.3)

If the “floor” of the system is flat and there is no sourcing term, this equation correctly describes the
motion of the fluid if there are no external forces.

Although not discussed in this paper, if we want to examine a system where the bed of the water body
is not flat (this situation is certainly more physical) a simple forcing term on the right hand side can be
added, see [KC04] [CDMW98] [AC97]

Finite Volume Scheme

Since solving systems described by these equations analytically is infeasible, except in a few very few simple
cases [Ach90], a numerical approach is needed. However, as demontrated above, a simple finite difference
scheme is not well suited. As can be seen from (0.2) we can write the equation in a well known conservation
law form

∂ϕ

∂t
+∇ · F = 0 (0.4)

These types of equations arise in many places in physics and applied mathematics, especially in fluid
mechanics. When written in this form, the conservation law is classified as a hyperbolic problem and is
well suited for finite volume techniques [Lev04]. The idea of finite volume method is to break the domain
up into cells and describe the changes in a cell over by considering fluxes through the cell boundary. For
example, suppose we have cell 1 and cell 2 and we approximate the solution in cell 1 to be constant and
the solution in cell 2 to be another, typically different, constant. Depending on the values of the constants
the flux through the cell boundary will be different. Consider the simple fluid dynamical example where
the flux is simply the velocity of the water. If the velocity of the water in cell 1 is greater then cell 2, the
water will want to flow to the right. If it was greater in cell 2, the water would want to flow to the left. For
more complicated situations, there can be more possible combinations.

Collectively, the problem of solving a PDE with a constant solution with a single discontinuity is
known as a Riemann problem. The example given in the previous section is a very simple example of a
Riemann problem. A more complete discussion can be found in [Lev04].

There are many choices for how to calculate this flux for a given Riemann problem. In particular we
want to investigate the shallow water equations in situations that lend themselves well to description by
triangular tilings. One potential way of determining the flux through a cell boundary is to simply take the
average. However, if we do this, and write out the resulting scheme, we get an equation that is similar to
the one derived above for finite difference which fails to capture the relevant important evolution behaviour.
Instead, we modify the average by adding a correction term that involves the normal component of the
flux through a cell which is effectively a viscous correction. This solution to the Riemann problem, is
a variation of the Godunov scheme called a Roe solver. For a full derivation for the 1D shallow water
equations, see [Lev04].

To derive a finite volume scheme, we first transform the conservation law form of the shallow wave
equations into a form

∂

∂t

∫

Ω

ϕdΩ +

∮

∂Ω

dSJ · n̂ = 0 J · n̂ = Jxnx + Jyny

which is obtained by integrating over the domain and applying the divergence theorem. To proceed, we
now break the integrals into components over each of the cell domains

∑

i

∂

∂t

∫

Ωi

ϕidΩi +

∮

∂Ωi

dSiJi · n̂i = 0
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where we are now integrating each of the functions over a cell labelled by i. However, we now make
the approximation that in each of the cells, the variables are constant. In other words we make the
approximation that

∫

Ωi

ϕidΩi ≈ ϕidΩi

∮

∂Ωi

Ji · n̂idS ≈
∑

j=k(i)

Ji,j∆lj Ji,j = Jxi n
x
j + Jyi n

y
j

where ∆lj labels the length of the boundary and k(i) is a list of the edges of the cell. Thus we now have an
equation for each cell i of the form

∂ϕi
∂t

=
1

∆Ωi

∑

j=k(i)

Ji,j∆lj

We now make a simple finite difference approximation to the time derivative to obtain the scheme

ϕn+1
i = ϕni −

∆t

∆Ωi

∑

j=k(i)

Ji,j∆lj (0.5)

This is the finite volume scheme we will be applying in this paper. So far, we have left the geometry of the
cells unspecified but we will now assume a triangular mesh. It is now important to note how this differs
from the simpler rectangular finite volume meshes. For rectangular finite volume meshes this expression
greatly simplifies since the area of each cell is identical as are the lengths. With a triangular grid, this is no
longer true. Additionally, for a rectangular grid the normal vectors are very simple and one component of
the flux Ji,j will cancel out, however in a triangular grid, the normal vector varies from triangle to triangle
and even each side of the triangle. While not more conceptually difficult, this procedure means that much
more bookkeeping must be done.

Triangular Meshes

In order to implement triangular meshes we used the toolbox pdetool in MATLAB. This toolbox allows
for the automatic creation triangular meshes when given a certain geometry. For the two problems we are
considering, we have two different geometries given by Figures 1 and 2.

In order to translate to be implemented in the finite volume scheme we use the command initmesh

which allows the creation of three matrices that encode all the information about the geometry. Using these
three matrices we are able to encode all the vital information about the mesh. Unfortunately MATLAB
does not order the triangles in any particular order so we had to implement a method of ordering the
triangles. This was achieved by using a simple search over all the triangles and matching triangle vertices.
Special care had to be paid for the boundary edges as MATLAB does not keep track of whether the triangle
is a boundary point or not. From this bookkeeping, the normal vectors, lengths, and areas of the triangles
were calculated and stored. For more information about how this is done specifically, see the Appendix.

The Riemann Problem

In the finite volume class of methods, finding the value of the fluxes at the interface is of primary importance,
as this allows us to advance the system in time. For systems of nontrivial complexity, determining this
value exactly is very difficult or impossible. A variety of approximation techniques have been developed to
allow efficient calculation of the solution to the Riemann problem. One of these is the Roe solver, developed
by Philip Roe. The Roe solver linearises the Jacobian of the fluxes over the normal vector. This allows
us to calculate the flux at the interface relatively easily while still preserving features such as shocks. We
write, following [AC97]
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Ji,j =
1

2

[
J(ϕ+

i,j) + J(ϕ−i,j)− |A|(ϕ+
i,j − ϕ−i,j)

]
(0.6)

where i, j refer to the i-th cell’s j-th interface, ϕ+ refers to the values of ϕ in the current cell, and ϕ− refers
to the values of ϕ in the adjacent cell being considered.

A =
∂(J · n)

∂ϕ
(0.7)

=




0 n · x̂ n · ŷ
(gh− u2)n · x̂− uvn · ŷ 2un · x̂ + vn · ŷ un · ŷ
(gh− v2)n · ŷ − uvn · x̂ vn · x̂ un · x̂ + 2vn · ŷ


 (0.8)

As we can see, we compute the average flux with a viscous correction of the form −|A|(ϕ+
i,j −ϕ−i,j). We can

split diagonalize this matrix to find |A|:

|A| =R|Λ|L (0.9)

Λ =



un · x̂) + vn · ŷ 0 0

0 un · x̂ + vn · ŷ −√gh 0
0 0 un · x̂ + vn · ŷ +

√
gh


 (0.10)

R =




0 1 1
n · ŷ u−√ghn · x̂ u+

√
ghn · x̂

−n · x̂ v −√ghn · ŷ v +
√
ghn · ŷ


 (0.11)

L =




−(un · ŷ − vn · x̂) n · ŷ −n · x̂
(un · x̂ + vn · ŷ)/2

√
gh+ 1

2 −n · x̂/2√gh −n · ŷ/2√gh
−(un · x̂ + vn · ŷ)/2

√
gh+ 1

2 n · x̂/2√gh n · ŷ/2√gh


 (0.12)

Where R is the right eigenvector matrix and L is the left eigenvector matrix.

Applications

We now have all the tools needed to solve the shallow water equations using a finite volume scheme. Using
(0.5) we apply the Roe solver to Ji,j and compute over each of the three cell sides.

Circular Dam

To demonstrate a simple application of the scheme we consider the classical problem of a circular dam
using the mesh given by Figure 1. We now need to apply the proper boundary and initial conditions. Since
we are dealing with an inviscid flow we have the no-slip boundary condition u · n̂ = 0 at the boundary. For
the simple case of a rectangular box these conditions are obtained by choosing an appropriate flux through
the boundary. This is given by

h− = h+ (uh)− = ±(uh)+ (vh)− = ∓(vh)+

where the minus sign is chosen when the uh or vh are perpendicular to the wall. For initial condition,
we simply chose an initial height of h = 1.9, see Figure 2. The simulation was run on three settings with
varying numbers of triangles for 1000 timesteps. The plotted figures demonstrate the most refined mesh
used which has roughly 5000 triangles. As can be seen in Figure 4, the triangular mesh is able to deal with
the circular geometry very easily and no loss of the flux is obtained due to edge effects. For a video of the
dam see [BH12a]
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Rotterdam

For this scenario, we want to examine the behaviour of the Nieuwe Waterweg in Holland. This is a shipping
canal created to allow passage of ships from the North Sea to the Europoort in Rotterdam, which is one of
the world’s busiest ports. The Netherlands is at great risk of flooding from the North Sea, and a surge
down the Nieuwe Waterweg would prove disasterous to Rotterdam and the surrounding region. As part
of Holland’s Delta Works plan to construct flood barriers, dams, and surge protectors, a movable barrier
was constructed in the Nieuwe Waterweg - the Maeslantkering (see Figure). This barrier sits in drydock
most of the time, but when a surge is imminent its halves will swing out to save Rotterdam. The arms
of the barrier take about 2 hours to close, and begin closing if the North Sea is likely to generate surges
of 3 metres or more. First the drydocks are flooded and the wedges float out into the water and begin
to move towards each other. After the gates have closed, they are filled with water (causing them to
submerge) and then function to block the surges. In this simulation, we want to investigate the situation
in which the Maeslantkering is hit with a wave while being hit from the sea. As opposed to the image of
the Maeslantkering where it is fully opened, we consider ours midway closed to demonstrate the effects of
how the structure breaks the waves. Additionally, we have simplified the geometry of the structure for
modelling purposes.

0.0.1 Implementation

There are three boundaries we need to account for: the open water at the ends of the channel, the banks
of the river, and the surge gate [CDMW98]. For the open sea, we fix uB , which is the horizontal velocity
coming from the North Sea. We are simulating a storm surge, so enforcing that the flow from the sea is
always towards Rotterdam is reasonable. We also assume that the flow from the sea is always subcritical.
In the field of fluid mechanics, a subcritical flow exists when the flow velocity is less than the wave velocity.
Supercritical flows have the opposite property. A supercritical flow is analogous to a supersonic wave in
air - we assume that a similar condition does not exist at the end of the waterway. At the other end, we
assume that there is no flow from Rotterdam. This makes sense since the continent lies in that direction -
the flows from the Rhine-Meuse-Scheldt delta are relatively small compared to those from the North Sea.

On triangles with edges facing the open sea, we fix the value for ur as the boundary uB , force vR = 0
(we assume no perpendicular flow at the interface), and solve for h using:

ur = uL −
√
g(
√
hr −

√
hl) (0.13)

We send the boundary condition to the Riemann solver by passing it as part of adj tri info, the matrix
which contains the information about the triangles the current one interfaces with.

For the riverbank, we assume that the interface causes perfect reflection of the vertical flow and does
not affect the horizontal flow (there are no eddy currents). Since we only examine inviscid flow, this is
somewhat reasonable - in this case, there would be no boundary layer to affect the horizontal flows near
the edge. However, it is not a very physical assumption. Water is not an ideal liquid and isn’t inviscid, so
in the Nieuwe Waterweg there will be boundary layers which our simulation doesn’t take into account.

On the gate, we assume that if the height of the water is less than the height of the gate, then the
gate also reflects the flows perfectly. However, we face an additional complication here - the gate faces are
neither perfectly horizontal nor perfectly vertical. In order to find the resulting fluxes from the reflection,
some algebra is necessary. Let ur and vr be the reflected flows at the interface with the gate. Since perfect
reflection occurs, |ur| = |u| and |vr| = |v|. We also specify that θ is the angle between the x̂ direction and
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the normal vector at the interface with the gate.

u · ur =u2 cos 2θ v · vr =v2 cos (2θ − π

2
) = v2 sin 2θ

u · −ur,x =u2 cos 2θ v · −vr,y =u2 sin 2θ

ur,x =− u cos 2θ vr,y =− v sin 2θ

u =
√
u2
r,x + u2

r,y v =
√
v2
r,x + v2

r,y

⇒ ur,y =u sin θ ⇒ vr,x =v cos θ

So that the interface fluxes uR and vR are:

uR = −u cos 2θ − v sin 2θ (0.14)

vR = u sin 2θ + v cos 2θ (0.15)

Where θ = arctan(ny/nx).
When sending the wave down the waterway, we simulate a square wave by dropping the height of the

sea after a few timesteps. Although the sea doesn’t produce square waves, the wave “spreads out” due to
our Riemann solver, creating a reasonable facsimile of an ocean wave. See Figure 6 for the wave after 15
timesteps

Results

For a video of the results, again see [BH12a]. Of particular interest is the reflective behaviour of the gates
and the extremely dampened wave that makes it though the gap between them - the Maeslantkering seems
to be an effective surge barrier, provided the gates themselves are not overwhelmed by a very tall wave.

Conclusion

We have implemented finite volume using triangular meshes with a Roe solver to obtain the evolution
of a fluid in two geometries. The implementation provides a very robust numerical scheme that can be
easily applied to many non-trivial geometries that simple rectangular finite volume methods are not able to
handle well. Future work that can be done is to implement the shallow water wave equations with viscous
effects as done in [AC97]. Additionally, we’ve neglected sea geometry and other force effects that might be
present. All the code run, along with documentation can be found at [BH12b].

Appendix

In this section we describe how the bookkeeping methods operate. We have made an effort to get the code
to run in the open source version of MATLAB, Octave, however Octave did not have the available tools
that MATLAB has and we were unable to get it to run properly.

Creating the triangular mesh is done by using the MATLAB toolbox pdetools which, unfortunately,
does not come standard with the student edition of MATLAB. In order to get around this, the matrices
are provided. However, it will not be possible to experiment with other geometries without such toolboxes.
Additionally, the way MATLAB does bookkeeping of the triangles is not very intuitive and much bookkeeping
must be done before the numerical model is applied.

Initially we export the geometry in terms of three matrices, p,e,t. The p matrix contains the co-
ordinates of the verticies of each the triangle. The matrix t contains the vertex labels of each the triangles
in a counter-clockwise order. Thus in order to find the co-ordinates of a given triangle, one would look at
the first three entries of t which tell us which entries of p to look at. For example, if we are considering the
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15th triangle, the co-ordinates of the verticies are given by p(:,t(1,15)),p(:,t(2,15)),p(:,t(3:15)).
Unfortunately, MATLAB does not order the triangles in any particular order, i.e. triangle 15 is not next
to triangle 16 in t. Thus we must search through all the triangle verticies in order to determine which
triangles are beside each other. This is done by a brute force search using the function edgefind. The
way this function works is by simply taking the ith triangle and checking the vertices of one edge of the
triangle with all the others. If the triangle is a boundary, this is handled approptiately. The resulting
matrix EdgeMatrix tells us that if we have, say the ith triangle, it shares boundaries with triangles a,b,c.
However the labelling is no particular order and it is now sorted via order triangles b (for triangles that
lie on the boundary) and order trinagles nb otherwise. Thus we now have that in EdgeMatrix for the
ith triangle, the normal vector of the first edge shares the boundary with first triangle in EdgeMatrix and
so on. Finally we must assign, properly, the boundaries. This is contained in the matrix e. This matrix
contains only the boundaries and the associated boundary number assigned to it by pdetools. Throughout
we use this matrix to check whether or not the triangle is on the boundary. For more information on how
MATLAB maintains all the triangle information see the help file.

The main parts of the programme are TriInfo,TriData. We have that

TriInfo(1) = Triangle Index

TriInfo(2,3) = components of n1 vector

TriInfo(4,5) = components of n2 vector

TriInfo(6,7) = components of n3 vector

TriInfo(8,) = whether the triangle considered is on the boundary

TriInfo(9,10,11) = lengths of n1,n2,n3

TriInfo(12) = area of triangle

which contains all the information about each triangle while TriInfo contains

TriData(1) = Triangle index

TriData(2) = h

TriData(3) = uh

TriData(4) = vh

which corresponds to ϕ.
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